Learn R Programming

destiny (version 2.0.4)

find_sigmas: Calculate the average dimensionality for m different gaussian kernel widths (

Description

The sigma with the maximum value in average dimensionality is close to the ideal one. Increasing step number gets this nearer to the ideal one.

Usage

find_sigmas(data, step_size = 0.1, steps = 10L, start = NULL,
  sample_rows = 500L, early_exit = FALSE, ..., censor_val = NULL,
  censor_range = NULL, missing_range = NULL, vars = NULL,
  verbose = TRUE)

Arguments

data
Data set with \(n\) samples. Can be a data.frame, matrix or ExpressionSet.
step_size
Size of log-sigma steps
steps
Number of steps/calculations
start
Initial value to search from. (Optional. default: \(\log_10(min(dist(data)))\))
sample_rows
Number of random rows to use for sigma estimation or vector of row indices/names to use. In the first case, only used if actually smaller than the number of available rows (Optional. default: 500)
early_exit
logical. If TRUE, return if the first local maximum is found, else keep running
...
All parameter after this are optional and have to be specified by name
censor_val
Value regarded as uncertain. Either a single value or one for every dimension
censor_range
Uncertainity range for censoring. A length-2-vector of certainty range start and end. TODO: also allow \(2\times G\) matrix
missing_range
Whole data range for missing value model. Has to be specified if NAs are in the data
vars
Variables (columns) of the data to use. Specifying TRUE will select all columns (default: All floating point value columns)
verbose
logical. If TRUE, show a progress bar and plot the output

Value

Object of class Sigmas

See Also

Sigmas, the class returned by this; DiffusionMap, the class this is used for

Examples

Run this code
data(guo)
sigs <- find_sigmas(guo, verbose = TRUE)
DiffusionMap(guo, sigs)

Run the code above in your browser using DataLab