Learn R Programming

clustrd (version 0.1.2)

MCAk: MCAk

Description

Implements Cluster MCA (Hwang, Dillon and Takane, 2006) which combines Multiple Correspondence Analysis for dimension reduction with k-means for clustering.

Usage

MCAk(data,nclus,ndim,nstart=100,smartStart=F,seed=1234)

Arguments

data
categorical dataset
nclus
number of clusters
ndim
dimensionality of the solution
nstart
number of random starts
smartStart
If TRUE then starting values are obtained with k-means
seed
seed is used to set the random number seed when smartStart = FALSE

Value

obscoord
object scores
attcoord
attribute scores
centroid
cluster centroids
cluID
cluster membership
criterion
optimal value of the objective function

References

Hwang, H., Dillon, W. R. and Takane, Y. (2006). An extension of multiple correspondence analysis for identifying heterogenous subgroups of respondents, Psychometrika, 71, 161-171.

See Also

groupals, iFCB, fuzzyMCAk

Examples

Run this code
     data(underwear)
     attlab = c(c(1:15),"by","tr","vm","jd","ml","bn","bg","ck","a1","a2","a3")
     outMCAk <- MCAk(underwear,nclus=3,ndim=2,nstart=1,smartStart=TRUE,seed=1234)
     plotrd(outMCAk,attlabel=attlab)

Run the code above in your browser using DataLab