Learn R Programming

clustrd (version 0.1.2)

fuzzyMCAk: fuzzyMCAk

Description

Implements Fuzzy Cluster MCA (Hwang, Dillon and Takane, 2010) which combines Multiple Correspondence Analysis for dimension reduction with fuzzy c-means (Bezdek, 1981) for clustering.

Usage

fuzzyMCAk(data,nclus=3,ndim=2,nstart=1)

Arguments

data
categorical dataset
nclus
number of clusters
ndim
dimensionality of the solution
nstart
number of random starts

Value

obscoord
object scores
attcoord
attribute scores
centroid
cluster centroids
cluID
hard cluster membership
U
fuzzy cluster membership
FPI
Fuzziness Performance Index
MPE
Modified Partition Entropy
criterion
optimal value of the objective function

References

Bezdek, J. C. (1981). Pattern recognition with fuzzy objective function algorithms. Kluwer Academic Publishers.

Hwang, H., Dillon, W. R. and Takane, Y. (2010). Fuzzy Cluster Multiple Correspondence Analysis. Behaviormetrika, 37(2), 111-133.

See Also

groupals, iFCB, MCAk

Examples

Run this code
     data(underwear)  
     outfMCAk <- fuzzyMCAk(underwear[c(1:200),c(1:2)],nclus=3,ndim=2,nstart=1)
     plotrd(outfMCAk)
     

Run the code above in your browser using DataLab