Learn R Programming

clustrd (version 0.1.2)

iFCB: iFCB

Description

Implements iFCB (Iodice D'Enza and Palumbo, 2013) which combines Nonsymmetric Correspondence Analysis for dimension reduction with k-means for clustering.

Usage

iFCB(data,nclus,ndim,nstart=100,smartStart=F,seed=1234)

Arguments

data
categorical dataset
nclus
number of clusters
ndim
dimensionality of the solution
nstart
number of random starts
smartStart
If TRUE then starting values are obtained with k-means
seed
seed is used to set the random number seed when smartStart = FALSE

Value

obscoord
object scores
attcoord
attribute scores
centroid
cluster centroids
cluID
cluster membership
criterion
optimal value of the objective function

References

Iodice D' Enza, A. and Palumbo, F. (2013). Iterative factor clustering of binary data. Computational Statistics, 28 (2), 789-807.

See Also

MCAk, fuzzyMCAk, groupals

Examples

Run this code
     data(underwear)
     attlab = c(c(1:15),"by","tr","vm","jd","ml","bn","bg","ck","a1","a2","a3")
     outiFCB <- iFCB(underwear,nclus=3,ndim=2,nstart=1,smartStart=TRUE,seed=1234)
     plotrd(outiFCB,attlabel=attlab)

Run the code above in your browser using DataLab