Performs CUR decomposition using rCUR::CUR
d.CUR(x, c = dim(x)[2], r = dim(x)[1], k = NULL, sv = NULL,
method = "highest.ranks", matrix.return = TRUE,
error.return = FALSE, scale = TRUE, center = TRUE,
verbose = TRUE, ...)Numeric matrix / data.frame: Input data
Integer: Number of columns to be selected
Integer: Number of rows to be selected
Integer: Rank of decomposition (Creates k components)
The SVD of x, if already available
String: "random", "top.scores", "ortho.top.scores",
"exact.num.random", "highest.ranks" (Default). See rCUR::CUR("method")
Logical: if TRUE, matrices C, U, and R are returned. If FALSE, U is not computed, which can be expensive, if r and c are large. Default = TRUE
Logical: if TRUE, the Frobenius norm of the difference between the original matrix and the
CUR approximation is returned. Effective only if matrix.return = TRUE. Default = FALSE
Logical: If TRUE, scale input
Logical: If TRUE, center input
Logical: If TRUE, print messages to output
Additional parameters to be passed to rCUR::CUR
rtDecom object
Note that k here does not correspond with k in the other decomposition functions.
Use c to determine dimensionality of resulting decomposition
Other Decomposition: d.H2OAE,
d.H2OGLRM, d.ICA,
d.ISOMAP, d.KPCA,
d.LLE, d.MDS,
d.NMF, d.PCA,
d.SPCA, d.SVD,
d.TSNE, d.UMAP