Learn R Programming

rtemis (version 0.79)

d.MDS: Multidimensional Scaling

Description

Perform MDS decomposition using stats:cmdscale

Usage

d.MDS(x, k = 2, dist.method = c("euclidean", "maximum", "manhattan",
  "canberra", "binary", "minkowski"), eig = FALSE, add = FALSE,
  x.ret = FALSE, scale = TRUE, center = TRUE, verbose = TRUE, ...)

Arguments

x

Input data

k

Integer vector of length 1 or greater. Rank of decomposition

dist.method

String: method to use to calculate distance. See stats::dist("method")

eig

Logical: If TRUE, return eigenvalues. Default = FALSE

add

Logical: If TRUE, an additive constant c* will be computed and added to the non-diagonal dissimilarities, which makes the Euclidean. Default = FALSE

x.ret

Logical: If TRUE, return the doubly centered symmetric distance matrix. Default = FALSE

scale

Logicall: If TRUE, scale input data before decomposition. Default = TRUE

center

Logicall: If TRUE, also center input data if scale is TRUE. Default = TRUE

verbose

Logical: If TRUE, print messages to screen. Default = TRUE

...

Additional parameters to be passed to svd

Value

rtDecom object

Details

Project scaled variables to MDS components. Input must be n by p, where n represents number of cases, and p represents number of features. fastMDS will be applied to the transpose of the n x p matrix. fastMDS will fail if there are any NA values or constant features: remove them using preprocess

See Also

Other Decomposition: d.CUR, d.H2OAE, d.H2OGLRM, d.ICA, d.ISOMAP, d.KPCA, d.LLE, d.NMF, d.PCA, d.SPCA, d.SVD, d.TSNE, d.UMAP