Usage
eco.env.regression(data, randomisation = c("taxa.labels", "richness",
"frequency", "sample.pool", "phylogeny.pool", "independentswap", "trialswap"),
permute = 0, method = c("quantile", "lm", "mantel"), altogether = TRUE,
indep.swap = 1000, abundance = TRUE, ...)eco.phy.regression(data, randomisation = c("taxa.labels", "richness",
"frequency", "sample.pool", "phylogeny.pool", "independentswap", "trialswap"),
permute = 0, method = c("quantile", "lm", "mantel"), indep.swap = 1000,
abundance = TRUE, ...)
eco.trait.regression(data, randomisation = c("taxa.labels", "richness",
"frequency", "sample.pool", "phylogeny.pool", "independentswap", "trialswap"),
permute = 0, method = c("quantile", "lm", "mantel"), altogether = TRUE,
indep.swap = 1000, abundance = TRUE, ...)
## S3 method for class 'eco.xxx.regression':
summary(object, ...)
## S3 method for class 'eco.xxx.regression':
print(x, ...)
## S3 method for class 'eco.xxx.regression':
plot(x, ...)
Arguments
randomisation
null distribution with which to compare your
community data, one of: taxa.labels
(DEFAULT),
richness
, frequency
, sample.pool
,
phylogeny.pool
, independentswap
, trialswap
permute
the number of null permutations to perform (DEFAULT
0)
method
how to compare distance matrices (only the lower
triangle;), one of: lm
(linear regression),
quantile
(DEFAULT; quantreg::rq
),
mantel
(
altogether
use distance matrix based on all traits (default
TRUE), or perform separate regressions for each trait (returns a
list, see details)
indep.swap
number of independent swap iterations to perform
(if specified in randomisation
; DEFAULT 1000)
abundance
whether to incorporate species' abundances
(default: TRUE)
...
additional parameters to pass on to model fitting functions
object
eco.xxx.regression
object
x
eco.xxx.regression
object