em(modelName, data, parameters, prior = NULL, control = emControl(),
warn = NULL, ...)
mclustModelNames
describes the available models.emControl()
.warn=FALSE
.do.call
.[i,k]
th entry is the
conditional probability of the ith observation belonging to
the kth component of the mixture.C. Fraley and A. E. Raftery (2002). Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association 97:611-631.
C. Fraley and A. E. Raftery (2005). Bayesian regularization for normal mixture estimation and model-based clustering. Technical Report, Department of Statistics, University of Washington.
C. Fraley and A. E. Raftery (2007). Bayesian regularization for normal mixture estimation and model-based clustering. Journal of Classification 24:155-181.
emE
, ...,
emVVV
,
estep
,
me
,
mstep
,
mclustOptions
,
do.call
msEst <- mstep(modelName = "EEE", data = iris[,-5],
z = unmap(iris[,5]))
names(msEst)
em(modelName = msEst$modelName, data = iris[,-5],
parameters = msEst$parameters)
do.call("em", c(list(data = iris[,-5]), msEst)) ## alternative call
Run the code above in your browser using DataLab