Learn R Programming

plsdof (version 0.2-1)

linear.pls: Linear Partial Least Squares Fit

Description

This function computes the Partial Least Squares solution and the first derivative of the regression coefficients. This implementation scales mostly in the number of variables

Usage

linear.pls.fit(X, y, m,compute.jacobian,DoF.max)

Arguments

X
matrix of predictor observations.
y
vector of response observations. The length of y is the same as the number of rows of X.
m
maximal number of Partial Least Squares components. Default is m=ncol(X).
compute.jacobian
Should the first derivative of the regression coefficients be computed as well? Default is FALSE
DoF.max
upper bound on the Degrees of Freedom. Default is min(ncol(X)+1,nrow(X)-1).

Value

  • coefficientsmatrix of regression coefficients
  • interceptvector of regression intercepts
  • DoFDegrees of Freedom
  • sigmahatvector of estimated model error
  • Yhatmatrix of fitted values
  • yhatvector of squared length of fitted values
  • RSSvector of residual sum of error
  • covariance{if compute.jacobian is TRUE, the function returns the array of covariance matrices for the PLS regression coefficients.}
  • TTmatrix of normalized PLS components

Details

We first standardize X to zero mean and unit variance.

References

Kraemer, N., Sugiyama M. (2010). "The Degrees of Freedom of Partial Least Squares Regression". preprint, http://arxiv.org/abs/1002.4112

See Also

kernel.pls.fit, pls.cv,pls.model, pls.ic

Examples

Run this code
n<-50 # number of observations
p<-5 # number of variables
X<-matrix(rnorm(n*p),ncol=p)
y<-rnorm(n)


pls.object<-linear.pls.fit(X,y,m=5,compute.jacobian=TRUE)

Run the code above in your browser using DataLab