Learn R Programming

ks (version 1.7.0)

plot.kda.kde: Kernel discriminant analysis plot for 1- to 3-dimensional data

Description

Kernel discriminant analysis plot for 1- to 3-dimensional data.

Usage

## S3 method for class 'kda.kde':
plot(x, y, y.group, ...)

Arguments

x
an object of class kda.kde (output from kda.kde)
y
matrix of test data points
y.group
vector of group labels for test data points
...
other graphics parameters

Value

  • Plot of 1-d and 2-d density estimates for discriminant analysis is sent to graphics window. Plot for 3-d is sent to RGL window.

Details

Function headers for the different dimensional data are ## univariate plot(x, y, y.group, prior.prob=NULL, xlim, ylim, xlab="x", ylab="Weighted density function", drawpoints=FALSE, col, ptcol, jitter=TRUE, ...)

## bivariate plot(x, y, y.group, prior.prob=NULL, cont=c(25,50,75), abs.cont, approx.cont=FALSE, xlim, ylim, xlab, ylab, drawpoints=FALSE, drawlabels=TRUE, col, partcol, ptcol, ...)

## trivariate plot(x, y, y.group, prior.prob=NULL, cont=c(25,50,75), abs.cont, approx.cont=FALSE, colors, alphavec, xlab, ylab, zlab, drawpoints=FALSE, size=3, ptcol="blue", ...) The arguments are ll{ prior.prob vector of prior probabilities cont vector of percentages for contour level curves abs.cont vector of absolute density estimate heights for contour level curves approx.cont flag to compute approximate contour levels xlim, ylim axes limits xlab, ylab, zlab axes labels drawpoints flag to draw data points. Default is FALSE. drawlabels flag to draw contour labels (2-d plot). Default is TRUE. jitter flag to jitter rug plot (1-d plot). Default is TRUE. ptcol vector of colours for data points of each group partcol vector of colours for partition classes (1-d, 2-d plot) col vector of colours for density estimates (1-d, 2-d plot) colors vector of colours for contours of density estimates (3-d plot) alphavec vector of transparency values - one for each contour (3-d plot) size size of plotting symbol (3-d plot) } -- For 1-d plots: The partition induced by the discriminant analysis is plotted as rug plot (with the ticks inside the axes). If drawpoints=TRUE then the data points are plotted as a rug plot with the ticks outside the axes, their colour is controlled by ptcol. -- For 2-d plots: The partition classes are displayed using the colours in partcol. The default contours of the density estimate are 25%, 50%, 75% or cont=c(25,50,75) for highest density regions. See plot.kde for more details. -- For 3-d plots: Default contours are cont=c(25,50,75) for highest density regions. See plot.kde for more details. The colour of each group is colors. The transparency of each contour (within each group) is alphavec. Default range is 0.1 to 0.5.

-- If prior.prob is set to a particular value then this is used. The default is NULL which means that the sample proportions are used.

If y and y.group are missing then the training data points are plotted. Otherwise, the test data y are plotted.

See Also

kda.kde, kda

Examples

Run this code
library(MASS)
data(iris)

## univariate example
ir <- iris[,1]
ir.gr <- iris[,5]
hs <- hkda(x=ir, x.gr=ir.gr)
kda.fhat <- kda.kde(ir, ir.gr, hs=hs, xmin=3, xmax=9)
plot(kda.fhat, xlab="Sepal length")

## bivariate example
ir <- iris[,1:2]
ir.gr <- iris[,5]
H <- Hkda(ir, ir.gr, bw="plugin", pre="scale")
kda.fhat <- kda.kde(ir, ir.gr, Hs=H)
plot(kda.fhat, cont=0, partcol=4:6)
plot(kda.fhat, drawlabels=FALSE, drawpoints=TRUE)

## trivariate example
## colour indicates species, transparency indicates density heights
ir <- iris[,1:3]
ir.gr <- iris[,5] 
H <- Hkda(ir, ir.gr, bw="plugin")
kda.fhat <- kda.kde(ir, ir.gr, Hs=H, compute.cont=TRUE)
plot(kda.fhat)

Run the code above in your browser using DataLab