gmdp(v1, v2, labels=c("v1","v2"), pseudocount=0, sliding=TRUE,
resolution=1)
"print"(x, mode=c("brief","detailed","full"),
digits=3, ...)
"summary"(object, ...)
pseudocount = 0
.sliding = TRUE
.gmdp
.gmdp
.c("brief","detailed","full")
,
indicating whether to print in full mode (default).gmdp
returns an object of class gmdp
, a numeric with an attribute of
meta in a list with components:labels: a string vector, giving the names of distributionsv1.ori: a numeric vector, the first input distributionv2.ori: a numeric vector, the second input distributionv1: a numeric vector, the normalized version of the first input distributionv2: a numeric vector, the normalized version of the second input distributiondistance: numeric, the GM-Distance (GMD)sliding: logical, indicating whether sliding is performedpseudocount: a numeric value that is allocated at each position in addition to original valuesgap.pair: a numeric matrix, giving one gap pair per row:
i.e. relative shifts between distributions of one optimal hitn.hit: numeric, the number of (equally good) optimal hits
citation("GMD")
print.gmdp
, summary.gmdp
, plot.gmdp
gmdm
require(GMD)
gmdp(c(4,1,1,0,0,0,3,1),c(2,1,1,0,0,0,3,3),sliding=FALSE)
x <- gmdp(c(4,1,1,0,0,0,3,1), c(1,1,2,1,1,0,0,0,3,3,5,5),
pseudocount=1, sliding=TRUE)
print(x)
print(x, "full")
Run the code above in your browser using DataLab