Rdocumentation
powered by
Learn R Programming
Bolstad2 (version 1.0-29)
Bolstad Functions
Description
A set of R functions and data sets for the book "Understanding Computational Bayesian Statistics." This book was written by Bill (WM) Bolstad and published in 2009 by John Wiley & Sons (ISBN 978-0470046098).
Copy Link
Link to current version
Version
Version
1.0-29
1.0-28
1.0-27
1.0-26
1.0-20
Install
install.packages('Bolstad2')
Monthly Downloads
548
Version
1.0-29
License
GPL (>= 2)
Issues
0
Pull Requests
0
Stars
1
Forks
0
Repository
https://github.com/jmcurran/Bolstad2
Maintainer
James Curran
Last Published
April 11th, 2022
Functions in Bolstad2 (1.0-29)
Search all functions
credIntNum
Calculate a credible interval from a numerically specified posterior CDF
chd.df
Coronary Heart Disease Chapter 8 Example 11
BayesCPH
Bayesian Cox Proportional Hazards Modelling
bivnormMH
Metropolis Hastings sampling from a Bivariate Normal distribution
GelmanRubin
Calculate the Gelman Rubin statistic
BayesLogistic
Bayesian Logistic Regression
credInt
Calculate a credible interval from a numerically specified posterior CDF or from a sample from the posterior
pnullNum
Test a one sided hypothesis from a numerically specified posterior CDF
c10ex16.df
Chapter 10 Example 16 data
AidsSurvival.df
HIV Survival data
logisticTest.df
Test data for bayesLogistic
hiermeanRegTest.df
Test data for hiermeanReg
thin
Thin an MCMC sample
hierMeanReg
Hierarchical Normal Means Regression Model
pnullSamp
Test a one sided hypothesis using a sample from a posterior density
normGibbs
Draw a sample from a posterior distribution of data with an unknown mean and variance using Gibbs sampling
sintegral
Numerical integration using Simpson's Rule
poissonTest.df
A test data set for bayesPois
credIntSamp
Calculate a credible interval from a numerically specified posterior CDF
BayesPois
Bayesian Pois Regression
describe
Give simple descriptive statistics for a matrix or a data frame
pNull
Test a one sided hypothesis from a numerically specified posterior CDF or from a sample from the posterior
normMixMH
Sample from a normal mixture model using Metropolis-Hastings