Package: | DynTxRegime |
Type: | Package |
Version: | 3.01 |
Date: | 2017-05-21 |
License: | GPL-2 |
Depends: | methods, modelObj, stats |
Suggests: | MASS, rpart, nnet |
Zhang, B., Tsiatis, A. A., Davidian, M., Zhang, M., and Laber, E. B. (2012). Estimating Optimal Treatment Regimes from a Classification Perspective. Stat, 1, 103--114
Zhang, B., Tsiatis, A. A., Laber, E. B., and Davidian, M. (2012). A Robust Method for Estimating Optimal Treatment Regimes. Biometrics, 68, 1010--1018.
Zhang, B., Tsiatis, A. A., Laber, E. B., and Davidian, M. (2013) Robust Estimation of Optimal Dynamic Treatment Regimes for Sequential Treatment Decisions. Biometrika, 100, 681--694.
Mebane, W. and Sekhon, J. S. (2011). Genetic Optimization Using Derivatives : The rgenoud package for R. Journal of Statistical Software, 42, 1--26.
Zhao, Y-Q., Laber, E. B., Saha, S., and Sands, B. E. (2016+). Efficient Augmentation and Relaxation Learning for Treatment Regimes Using Observational Data. in press.
Zhou, X., Mayer-Hamblett, N., Kham, U., and Kosorok, M. R. (2016+). Residual Weighted Learning for Estimating Individualized Treatment Rules. Journal of the American Statistical Association, in press.
Zhao, Y-Q., Zeng, D., Rush, A. J., and Kosrok, M. R. (2012). Estimating Individualized Treatment Rules Using Outcome Weighted Learning. Journal of the American Statistical Association, 107, 1106--1118.
Zhao, Y-Q., Zeng, D., Laber, E. B., and Kosorok, M. R. (2015). New Statistical Learning Methods for Estimating Optimal Dynamic Treatment Regimes. Journal of the American Statistical Association, 110, 583--598.
bowl
,
earl
,
iqLearnFSC
,
iqLearnFSM
,
iqLearnFSV
,
iqLearnSS
,
optimalClass
,
optimalSeq
,
owl
,
qLearn
, and
rwl
,