# NOT RUN {
library(RSSL)
library(ggplot2)
library(dplyr)
## Example 1: Half moons
# Generate a dataset
set.seed(2)
df_orig <- generateCrescentMoon(100,sigma = 0.3)
df <- df_orig %>%
add_missinglabels_mar(Class~.,0.98)
lambda <- 0.01
gamma <- 10000
rbf_param <- 0.125
# Train classifiers
# }
# NOT RUN {
class_sup <- KernelLeastSquaresClassifier(
Class~.,df,
kernel=kernlab::rbfdot(rbf_param),
lambda=lambda,scale=FALSE)
class_lap <- LaplacianKernelLeastSquaresClassifier(
Class~.,df,
kernel=kernlab::rbfdot(rbf_param),
lambda=lambda,gamma=gamma,
normalized_laplacian = TRUE,
scale=FALSE)
classifiers <- list("Lap"=class_lap,"Sup"=class_sup)
# Plot classifiers (can take a couple of seconds)
df %>%
ggplot(aes(x=X1,y=X2,color=Class)) +
geom_point() +
coord_equal() +
stat_classifier(aes(linetype=..classifier..),
classifiers = classifiers ,
color="black")
# Calculate the loss
lapply(classifiers,function(c) mean(loss(c,df_orig)))
# }
# NOT RUN {
## Example 2: Two circles
set.seed(1)
df_orig <- generateTwoCircles(1000,noise=0.05)
df <- df_orig %>%
add_missinglabels_mar(Class~.,0.994)
lambda <- 10e-12
gamma <- 100
rbf_param <- 0.1
# Train classifiers
# }
# NOT RUN {
class_sup <- KernelLeastSquaresClassifier(
Class~.,df,
kernel=kernlab::rbfdot(rbf_param),
lambda=lambda,scale=TRUE)
class_lap <- LaplacianKernelLeastSquaresClassifier(
Class~.,df,
kernel=kernlab::rbfdot(rbf_param),
adjacency_k = 30,
lambda=lambda,gamma=gamma,
normalized_laplacian = TRUE,
scale=TRUE)
classifiers <- list("Lap"=class_lap,"Sup"=class_sup)
# Plot classifiers (Can take a couple of seconds)
df %>%
ggplot(aes(x=X1,y=X2,color=Class,size=Class)) +
scale_size_manual(values=c("1"=3,"2"=3),na.value=1) +
geom_point() +
coord_equal() +
stat_classifier(aes(linetype=..classifier..),
classifiers = classifiers ,
color="black",size=1)
# }
Run the code above in your browser using DataLab