Implementation of the Linear Support Vector Classifier. Can be solved in the Dual formulation, which is equivalent to SVM
or the Primal formulation.
LinearSVM(X, y, C = 1, method = "Dual", scale = TRUE, eps = 1e-09,
reltol = 1e-13, maxit = 100)
matrix; Design matrix for labeled data
factor or integer vector; Label vector
Cost variable
Estimation procedure c("Dual","Primal","BGD")
Whether a z-transform should be applied (default: TRUE)
Small value to ensure positive definiteness of the matrix in QP formulation
relative tolerance using during BFGS optimization
Maximum number of iterations for BFGS optimization
S4 object of type LinearSVM
Other RSSL classifiers:
EMLeastSquaresClassifier
,
EMLinearDiscriminantClassifier
,
GRFClassifier
,
ICLeastSquaresClassifier
,
ICLinearDiscriminantClassifier
,
KernelLeastSquaresClassifier
,
LaplacianKernelLeastSquaresClassifier()
,
LaplacianSVM
,
LeastSquaresClassifier
,
LinearDiscriminantClassifier
,
LinearTSVM()
,
LogisticLossClassifier
,
LogisticRegression
,
MCLinearDiscriminantClassifier
,
MCNearestMeanClassifier
,
MCPLDA
,
MajorityClassClassifier
,
NearestMeanClassifier
,
QuadraticDiscriminantClassifier
,
S4VM
,
SVM
,
SelfLearning
,
TSVM
,
USMLeastSquaresClassifier
,
WellSVM
,
svmlin()