A linear discriminant classifier that updates the estimates of the means and covariance matrix based on unlabeled examples.
MCLinearDiscriminantClassifier(X, y, X_u, method = "invariant",
prior = NULL, x_center = TRUE, scale = FALSE)
matrix; Design matrix for labeled data
factor or integer vector; Label vector
matrix; Design matrix for unlabeled data
character; One of c("invariant","closedform")
Matrix (k by 1); Class prior probabilities. If NULL, estimated from data
logical; Should the features be centered?
logical; Should the features be normalized? (default: FALSE)
This method uses the parameter updates of the estimated means and covariance proposed in (Loog 2014). Using the method="invariant" option, uses the scale invariant parameter update proposed in (Loog 2014), while method="closedform" using the non-scale invariant version from (Loog 2012).
Loog, M., 2012. Semi-supervised linear discriminant analysis using moment constraints. Partially Supervised Learning, LNCS, 7081, pp.32-41.
Loog, M., 2014. Semi-supervised linear discriminant analysis through moment-constraint parameter estimation. Pattern Recognition Letters, 37, pp.24-31.
Other RSSL classifiers:
EMLeastSquaresClassifier
,
EMLinearDiscriminantClassifier
,
GRFClassifier
,
ICLeastSquaresClassifier
,
ICLinearDiscriminantClassifier
,
KernelLeastSquaresClassifier
,
LaplacianKernelLeastSquaresClassifier()
,
LaplacianSVM
,
LeastSquaresClassifier
,
LinearDiscriminantClassifier
,
LinearSVM
,
LinearTSVM()
,
LogisticLossClassifier
,
LogisticRegression
,
MCNearestMeanClassifier
,
MCPLDA
,
MajorityClassClassifier
,
NearestMeanClassifier
,
QuadraticDiscriminantClassifier
,
S4VM
,
SVM
,
SelfLearning
,
TSVM
,
USMLeastSquaresClassifier
,
WellSVM
,
svmlin()