Support Vector Machine implementation using the quadprog
solver.
SVM(X, y, C = 1, kernel = NULL, scale = TRUE, intercept = FALSE,
x_center = TRUE, eps = 1e-09)
matrix; Design matrix for labeled data
factor or integer vector; Label vector
numeric; Cost variable
kernlab::kernel to use
logical; Should the features be normalized? (default: FALSE)
logical; Whether an intercept should be included
logical; Should the features be centered?
numeric; Small value to ensure positive definiteness of the matrix in the QP formulation
S4 object of type SVM
This implementation will typically be slower and use more memory than the svmlib implementation in the e1071 package. It is, however, useful for comparisons with the TSVM
implementation.
Other RSSL classifiers:
EMLeastSquaresClassifier
,
EMLinearDiscriminantClassifier
,
GRFClassifier
,
ICLeastSquaresClassifier
,
ICLinearDiscriminantClassifier
,
KernelLeastSquaresClassifier
,
LaplacianKernelLeastSquaresClassifier()
,
LaplacianSVM
,
LeastSquaresClassifier
,
LinearDiscriminantClassifier
,
LinearSVM
,
LinearTSVM()
,
LogisticLossClassifier
,
LogisticRegression
,
MCLinearDiscriminantClassifier
,
MCNearestMeanClassifier
,
MCPLDA
,
MajorityClassClassifier
,
NearestMeanClassifier
,
QuadraticDiscriminantClassifier
,
S4VM
,
SelfLearning
,
TSVM
,
USMLeastSquaresClassifier
,
WellSVM
,
svmlin()