## Not run:
# ## Simulate a sample with 100 events from an inverse Gaussian
# set.seed(1102006,"Mersenne-Twister")
# mu.true <- 0.075
# sigma2.true <- 3
# sampleSize <- 100
# sampIG <- rinvgauss(sampleSize,mu=mu.true,sigma2=sigma2.true)
# ## Fit it with an inverse Gaussian Model
# sampIGmleIG <- invgaussMLE(sampIG)
# ## draw the QQ plot on a log scale
# qqDuration(sampIGmleIG,log="xy")
# ## Fit it with a log normal Model
# sampIGmleLN <- lnormMLE(sampIG)
# ## draw the QQ plot on a log scale
# qqDuration(sampIGmleLN,log="xy")
# ## Fit it with a gamma Model
# sampIGmleGA <- gammaMLE(sampIG)
# ## draw the QQ plot on a log scale
# qqDuration(sampIGmleGA,log="xy")
# ## Fit it with a Weibull Model
# sampIGmleWB <- weibullMLE(sampIG)
# ## draw the QQ plot on a log scale
# qqDuration(sampIGmleWB,log="xy")
# ## Fit it with a refractory exponential Model
# sampIGmleRE <- rexpMLE(sampIG)
# ## draw the QQ plot on a log scale
# qqDuration(sampIGmleRE,log="xy")
# ## Fit it with a log logisitc Model
# sampIGmleLL <- llogisMLE(sampIG)
# ## draw the QQ plot on a log scale
# qqDuration(sampIGmleLL,log="xy")
# ## End(Not run)
Run the code above in your browser using DataLab