## Not run:
#
# set.seed(23235)
# ss <- TRUE # sample(1:150, 10 )
# hc1 <- hclust(dist(iris[ss,-5]), "com")
# hc2 <- hclust(dist(iris[ss,-5]), "single")
# tree1 <- as.dendrogram(hc1)
# tree2 <- as.dendrogram(hc2)
# # cutree(tree1)
#
# Bk(hc1, hc2, k = 3)
# Bk(hc1, hc2, k = 2:10)
# Bk(hc1, hc2)
#
# Bk(tree1, tree2, k = 3)
# Bk(tree1, tree2, k = 2:5)
#
# system.time(Bk(hc1, hc2, k = 2:5)) # 0.01
# system.time(Bk(hc1, hc2)) # 1.28
# system.time(Bk(tree1, tree2, k = 2:5)) # 0.24 # after fixes.
# system.time(Bk(tree1, tree2, k = 2:10)) # 0.31 # after fixes.
# system.time(Bk(tree1, tree2)) # 7.85
# Bk(tree1, tree2, k= 99:101)
#
# y <- Bk(hc1, hc2, k = 2:10)
# plot(unlist(y)~c(2:10), type = "b", ylim = c(0,1))
#
# # can take a few seconds
# y <- Bk(hc1, hc2)
# plot(unlist(y)~as.numeric(names(y)),
# main = "Bk plot", pch = 20,
# xlab = "k", ylab = "FM Index",
# type = "b", ylim = c(0,1))
# # we are still missing some hypothesis testing here.
# # for this we'll have the Bk_plot function.
#
# ## End(Not run)
Run the code above in your browser using DataLab