## Not run:
#
# set.seed(23235)
# ss <- TRUE # sample(1:150, 10 )
# hc1 <- hclust(dist(iris[ss,-5]), "com")
# hc2 <- hclust(dist(iris[ss,-5]), "single")
# # dend1 <- as.dendrogram(hc1)
# # dend2 <- as.dendrogram(hc2)
# # cutree(dend1)
#
# # small k
# A1_clusters <- cutree(hc1, k=3) # will give a right tailed distribution
# # large k
# A1_clusters <- cutree(hc1, k=50) # will give a discrete distribution
# # "medium" k
# A1_clusters <- cutree(hc1, k=25) # gives almost the normal distribution!
# A2_clusters <- A1_clusters
#
# R <- 10000
# set.seed(414130)
# FM_index_H0 <- replicate(R, FM_index_permutation(A1_clusters, A2_clusters)) # can take 10 sec
# plot(density(FM_index_H0), main = "FM Index distribution under H0\n (10000 permutation)")
# abline(v = mean(FM_index_H0), col = 1, lty = 2)
# # The permutation distribution is with a heavy right tail:
# library(psych)
# skew(FM_index_H0) # 1.254
# kurtosi(FM_index_H0) # 2.5427
#
# mean(FM_index_H0); var(FM_index_H0)
# the_FM_index <- FM_index(A1_clusters, A2_clusters)
# the_FM_index
# our_dnorm <- function(x) {
# dnorm(x, mean = attr(the_FM_index, "E_FM"),
# sd = sqrt(attr(the_FM_index, "V_FM")))
# }
# # our_dnorm(0.35)
# curve(our_dnorm,
# col = 4,
# from = -1,to=1,n=R,add = TRUE)
# abline(v = attr(the_FM_index, "E_FM"), col = 4, lty = 2)
#
# legend("topright", legend = c("asymptotic", "permutation"), fill = c(4,1))
# ## End(Not run)
Run the code above in your browser using DataLab