Learn R Programming

mclust (version 3.4.7)

estepE: E-step in the EM algorithm for a parameterized Gaussian mixture model.

Description

Implements the expectation step in the EM algorithm for a parameterized Gaussian mixture model.

Usage

estepE(data, parameters, warn = NULL, ...)
estepV(data, parameters, warn = NULL, ...)
estepEII(data, parameters, warn = NULL, ...)
estepVII(data, parameters, warn = NULL, ...)
estepEEI(data, parameters, warn = NULL, ...)
estepVEI(data, parameters, warn = NULL, ...)
estepEVI(data, parameters, warn = NULL, ...)
estepVVI(data, parameters, warn = NULL, ...)
estepEEE(data, parameters, warn = NULL, ...)
estepEEV(data, parameters, warn = NULL, ...)
estepVEV(data, parameters, warn = NULL, ...)
estepVVV(data, parameters, warn = NULL, ...)

Arguments

data
A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.
parameters
The parameters of the model:
  • An argument describing the variance (depends on the model):[object Object],[object Object],[object Object],[object Object]
warn
A logical value indicating whether or certain warnings should be issued. The default is set in .Mclust$warn.
...
Catches unused arguments in indirect or list calls via do.call.

Value

  • A list including the following components:
  • modelNameCharacter string identifying the model.
  • zA matrix whose [i,k]th entry is the conditional probability of the ith observation belonging to the kth component of the mixture.
  • parametersThe input parameters.
  • loglikThe logliklihood for the data in the mixture model.
  • Attribute
    • "WARNING": An appropriate warning if problems are encountered in the computations.

References

C. Fraley and A. E. Raftery (2002). Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association.

C. Fraley and A. E. Raftery (2006). MCLUST Version 3 for R: Normal Mixture Modeling and Model-Based Clustering, Technical Report no. 504, Department of Statistics, University of Washington.

See Also

estep, em, mstep, do.call, mclustOptions, mclustVariance

Examples

Run this code
msEst <- mstepEII(data = iris[,-5], z = unmap(iris[,5]))
names(msEst)

estepEII(data = iris[,-5], parameters = msEst$parameters)

Run the code above in your browser using DataLab