Learn R Programming

plsdof (version 0.2-1)

vcov.plsdof: Variance-covariance matrix

Description

This function returns the variance-covariance matrix of a plsdof-object.

Usage

## S3 method for class 'plsdof':
vcov(object,...)

Arguments

object
an object of class "plsdof" that is returned by the function linear.pls
...
additional parameters

Value

  • variance-covariance matrix

Details

The function returns the variance-covariance matrix for the optimal number of components. It can be applied to objects returned by pls.ic and pls.cv.

References

Kraemer, N., Sugiyama M. (2010). "The Degrees of Freedom of Partial Least Squares Regression". preprint, http://arxiv.org/abs/1002.4112 Kraemer, N., Sugiyama M., Braun, M.L. (2009) "Lanczos Approximations for the Speedup of Kernel Partial Least Squares Regression." Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS), p. 272-279

See Also

coef.plsdof, pls.ic, pls.cv

Examples

Run this code
n<-50 # number of observations
p<-5 # number of variables
X<-matrix(rnorm(n*p),ncol=p)
y<-rnorm(n)


pls.object<-pls.ic(X,y,m=5,criterion="bic")
myvcov<-vcov(pls.object)

Run the code above in your browser using DataLab