Learn R Programming

polyqtlR (version 0.1.1)

QTL Analysis in Autopolyploid Bi-Parental F1 Populations

Description

Quantitative trait loci (QTL) analysis and exploration of meiotic patterns in autopolyploid bi-parental F1 populations. For all ploidy levels, identity-by-descent (IBD) probabilities can be estimated. Significance thresholds, exploring QTL allele effects and visualising results are provided. For more background and to reference the package see .

Copy Link

Version

Install

install.packages('polyqtlR')

Monthly Downloads

248

Version

0.1.1

License

GPL-3

Maintainer

Peter Bourke

Last Published

January 9th, 2024

Functions in polyqtlR (0.1.1)

estimate_GIC

Estimate the Genotypic Information Coefficient (GIC)
findSupport

Function to find a LOD - x support interval around a QTL position
impute_dosages

Re-estimate marker dosages given IBD input estimated using a high error prior.
findPeak

Function to find the position of maximum LOD on a particular linkage group
import_IBD

Import IBD probabilities as estimated by TetraOrigin or PolyOrigin
convert_mappoly_to_phased.maplist

Function to extract the phased map from a mappoly.map object
exploreQTL

Explore the possible segregation type of a QTL peak using Schwarz Information Criterion
count_recombinations

Predict recombination breakpoints using IBD probabilities
maxL_IBD

Wrapper function to run estimate_IBD function over multiple error priors
estimate_IBD

Generate IBD probabilities from marker genotypes and a phased linkage map
qtl_LODs.4x

QTL output for example tetraploid
plotQTL

Plot the results of QTL scan.
meiosis_report

Generate a 'report' of predicted meiotic behaviour in an F1 population
mr.ls

Example output of meiosis report function
segList_2x

Expected segregation for all markers types of a diploid cross
phased_maplist.4x

Phased maplist for example tetraploid
segList_3x

Expected segregation for all markers types of a triploid cross (4 x 2)
segList_3x_24

Expected segregation for all markers types of a triploid cross (2 x 4)
plotRecLS

Plot the recombination landscape across the genome
polyqtlR-package

QTL analysis in polyploid species using posterior genotype probabilities
singleMarkerRegression

Run a single marker regression using marker dosages
visualiseGIC

Visualise Genotypic Information Coefficient
segList_6x

Expected segregation for all markers types of a hexaploid cross
segMaker

Create a list of possible QTL segregation types
thinmap

Thin out map data
visualiseQTLeffects

Visualise QTL homologue effects around a QTL position
visualisePairing

Visualise pairing of parental homologues
visualiseHaplo

Visualise haplotypes in certain individuals in a certain region
spline_IBD

Fit splines to IBD probabilities
segList_4x

Expected segregation for all markers types of a tetraploid cross
SNP_dosages.4x

SNP marker dosage data for example tetraploid
BLUE

Calculate Best Linear Unbiased Estimates using linear mixed model from nlme package
check_cofactors

Build a multi-QTL model using step-wise procedure of checking genetic co-factors.
QTLscan

General QTL function that allows for co-factors, completely randomised block designs and the possibility to derive LOD thresholds using a permutation test
PVE

Function to determine the percentage variance explained (PVE) of a (maximal) QTL model, and explore sub-models.
Rec_Data_4x

Recombination data for example tetraploid
GIC_4x

Genotypic Information Coefficient for example tetraploid
Phenotypes_4x

Phenotypes for example tetraploid
IBD_4x

Identical by descent probabilities for example tetraploid
BLUEs.pheno

Best Linear Unbiased Estimates of phenotype