
torch can be installed from CRAN with:
install.packages("torch")
You can also install the development version with:
remotes::install_github("mlverse/torch")
At the first package load additional software will be installed. See also the full installation guide here.
You can create torch tensors from R objects with the torch_tensor
function and convert them back to R objects with as_array
.
library(torch)
x <- array(runif(8), dim = c(2, 2, 2))
y <- torch_tensor(x, dtype = torch_float64())
y
#> torch_tensor
#> (1,.,.) =
#> 0.6192 0.5800
#> 0.2488 0.3681
#>
#> (2,.,.) =
#> 0.0042 0.9206
#> 0.4388 0.5664
#> [ CPUDoubleType{2,2,2} ]
identical(x, as_array(y))
#> [1] TRUE
In the following snippet we let torch, using the autograd feature, calculate the derivatives:
x <- torch_tensor(1, requires_grad = TRUE)
w <- torch_tensor(2, requires_grad = TRUE)
b <- torch_tensor(3, requires_grad = TRUE)
y <- w * x + b
y$backward()
x$grad
#> torch_tensor
#> 2
#> [ CPUFloatType{1} ]
w$grad
#> torch_tensor
#> 1
#> [ CPUFloatType{1} ]
b$grad
#> torch_tensor
#> 1
#> [ CPUFloatType{1} ]
No matter your current skills it’s possible to contribute to torch
development. See the contributing
guide for more
information.
install.packages('torch')
dataset
device
df
.
This is exactly equivalent to distr_gamma(alpha=0.5*df, beta=0.5)
concentration
and rate
.script_function
to a pathn
columns of a product of Householder matrices.probs
or logits
(but not both).
Samples are binary (0 or 1). They take the value 1
with probability p
and 0
with probability 1 - p
.script_function
or script_module
in bytecode form,
to be loaded on a mobile deviceloc
and scale
.probs
or
logits
(but not both).n
-th power of a square matrix for an integer n
.rate
, the rate parameter.script_function
or script_module
previously saved with jit_save
script_function
.torch_tensordot()
X
to the system torch_tensordot(A, X) = B
.MaxPool3d
.MaxPool2d
.MaxPool1d
.padding_value
nn_parameter
nn_silu()
for more information.torch_index_put
.indices
.