
Does the following to model
(i.e., a umx top/MZ/DZ supermodel):
Change top.expMeans
to top.intercept
.
Create top.meansBetas
for beta weights in rows (of covariates) and columns for each variable.
Add matrices for each twin's data.cov vars (matrixes are called T1DefVars
).
Switch mxExpectationNormal
in each data group to point to the local expMean
.
Add "expMean" algebra to each data group.
grp.expMean
sums top.intercept
and grp.DefVars %*% top.meansBetas for each twin.
xmuTwinUpgradeMeansToCovariateModel(model, fullVars, fullCovs, sep)
The umxSuperModel()
we are modifying (must have MZ
DZ
and top
submodels)
the FULL names of manifest variables
the FULL names of definition variables
How twin variable names have been expanded, e.g. "_T".
model, now with means model extended to covariates.
In umx models with no covariates, means live in top$expMean
called by xmuTwinSuper_Continuous()
Other xmu internal not for end user:
umxModel()
,
umxRenameMatrix()
,
umxTwinMaker()
,
umx_APA_pval()
,
umx_fun_mean_sd()
,
umx_get_bracket_addresses()
,
umx_make()
,
umx_standardize()
,
umx_string_to_algebra()
,
umx
,
xmuHasSquareBrackets()
,
xmuLabel_MATRIX_Model()
,
xmuLabel_Matrix()
,
xmuLabel_RAM_Model()
,
xmuMI()
,
xmuMakeDeviationThresholdsMatrices()
,
xmuMakeOneHeadedPathsFromPathList()
,
xmuMakeTwoHeadedPathsFromPathList()
,
xmuMaxLevels()
,
xmuMinLevels()
,
xmuPropagateLabels()
,
xmuRAM2Ordinal()
,
xmuTwinSuper_Continuous()
,
xmu_CI_merge()
,
xmu_CI_stash()
,
xmu_DF_to_mxData_TypeCov()
,
xmu_PadAndPruneForDefVars()
,
xmu_cell_is_on()
,
xmu_check_levels_identical()
,
xmu_check_needs_means()
,
xmu_check_variance()
,
xmu_clean_label()
,
xmu_data_missing()
,
xmu_data_swap_a_block()
,
xmu_describe_data_WLS()
,
xmu_dot_make_paths()
,
xmu_dot_make_residuals()
,
xmu_dot_maker()
,
xmu_dot_move_ranks()
,
xmu_dot_rank_str()
,
xmu_extract_column()
,
xmu_get_CI()
,
xmu_lavaan_process_group()
,
xmu_make_TwinSuperModel()
,
xmu_make_bin_cont_pair_data()
,
xmu_make_mxData()
,
xmu_match.arg()
,
xmu_name_from_lavaan_str()
,
xmu_path2twin()
,
xmu_path_regex()
,
xmu_safe_run_summary()
,
xmu_set_sep_from_suffix()
,
xmu_show_fit_or_comparison()
,
xmu_simplex_corner()
,
xmu_standardize_ACEcov()
,
xmu_standardize_ACEv()
,
xmu_standardize_ACE()
,
xmu_standardize_CP()
,
xmu_standardize_IP()
,
xmu_standardize_RAM()
,
xmu_standardize_SexLim()
,
xmu_standardize_Simplex()
,
xmu_start_value_list()
,
xmu_starts()
,
xmu_twin_add_WeightMatrices()
,
xmu_twin_check()
,
xmu_twin_get_var_names()
,
xmu_twin_upgrade_selDvs2SelVars()
# NOT RUN {
data(twinData) # ?twinData from Australian twins.
twinData[, c("ht1", "ht2")] = twinData[, c("ht1", "ht2")] * 10
mzData = twinData[twinData$zygosity %in% "MZFF", ]
dzData = twinData[twinData$zygosity %in% "DZFF", ]
# m1 = umxACE(selDVs= "ht", sep= "", dzData= dzData, mzData= mzData, autoRun= FALSE)
# m2 = xmuTwinUpgradeMeansToCovariateModel(m1, fullVars = c("ht1", "ht2"),
# fullCovs = c("age1", "sex1", "age2", "sex2"), sep = "")
#
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab