Replaces NAs in definition slots with the mean for that variable ONLY where all data are missing for that twin.
xmu_PadAndPruneForDefVars(
df,
varNames,
defNames,
suffixes,
highDefValue = 99,
rm = c("drop_missing_def", "pad_with_mean")
)
The dataframe to process
list of names of the variables being analysed
list of covariates
that map names on columns in df (i.e., c("T1", "T2"))
What to replace missing definition variables (covariates) with. Default = 99
= how to handle missing values in the varNames. Default is "drop_missing_def", "pad_with_mean")
dataframe
Other xmu internal not for end user:
umxModel()
,
umxRenameMatrix()
,
umxTwinMaker()
,
umx_APA_pval()
,
umx_fun_mean_sd()
,
umx_get_bracket_addresses()
,
umx_make()
,
umx_standardize()
,
umx_string_to_algebra()
,
umx
,
xmuHasSquareBrackets()
,
xmuLabel_MATRIX_Model()
,
xmuLabel_Matrix()
,
xmuLabel_RAM_Model()
,
xmuMI()
,
xmuMakeDeviationThresholdsMatrices()
,
xmuMakeOneHeadedPathsFromPathList()
,
xmuMakeTwoHeadedPathsFromPathList()
,
xmuMaxLevels()
,
xmuMinLevels()
,
xmuPropagateLabels()
,
xmuRAM2Ordinal()
,
xmuTwinSuper_Continuous()
,
xmuTwinUpgradeMeansToCovariateModel()
,
xmu_CI_merge()
,
xmu_CI_stash()
,
xmu_DF_to_mxData_TypeCov()
,
xmu_cell_is_on()
,
xmu_check_levels_identical()
,
xmu_check_needs_means()
,
xmu_check_variance()
,
xmu_clean_label()
,
xmu_data_missing()
,
xmu_data_swap_a_block()
,
xmu_describe_data_WLS()
,
xmu_dot_make_paths()
,
xmu_dot_make_residuals()
,
xmu_dot_maker()
,
xmu_dot_move_ranks()
,
xmu_dot_rank_str()
,
xmu_extract_column()
,
xmu_get_CI()
,
xmu_lavaan_process_group()
,
xmu_make_TwinSuperModel()
,
xmu_make_bin_cont_pair_data()
,
xmu_make_mxData()
,
xmu_match.arg()
,
xmu_name_from_lavaan_str()
,
xmu_path2twin()
,
xmu_path_regex()
,
xmu_safe_run_summary()
,
xmu_set_sep_from_suffix()
,
xmu_show_fit_or_comparison()
,
xmu_simplex_corner()
,
xmu_standardize_ACEcov()
,
xmu_standardize_ACEv()
,
xmu_standardize_ACE()
,
xmu_standardize_CP()
,
xmu_standardize_IP()
,
xmu_standardize_RAM()
,
xmu_standardize_SexLim()
,
xmu_standardize_Simplex()
,
xmu_start_value_list()
,
xmu_starts()
,
xmu_twin_add_WeightMatrices()
,
xmu_twin_check()
,
xmu_twin_get_var_names()
,
xmu_twin_upgrade_selDvs2SelVars()
# NOT RUN {
data(twinData)
sum(is.na(twinData$ht1))
df = xmu_PadAndPruneForDefVars(twinData, varNames = "ht", defNames = "wt", c("1", "2"))
# }
Run the code above in your browser using DataLab