Learn R Programming

umx (version 4.0.0)

xmu_PadAndPruneForDefVars: Where all data are missing for a twin, add default values for definition variables, allowing the row to be kept

Description

Replaces NAs in definition slots with the mean for that variable ONLY where all data are missing for that twin.

Usage

xmu_PadAndPruneForDefVars(
  df,
  varNames,
  defNames,
  suffixes,
  highDefValue = 99,
  rm = c("drop_missing_def", "pad_with_mean")
)

Arguments

df

The dataframe to process

varNames

list of names of the variables being analysed

defNames

list of covariates

suffixes

that map names on columns in df (i.e., c("T1", "T2"))

highDefValue

What to replace missing definition variables (covariates) with. Default = 99

rm

= how to handle missing values in the varNames. Default is "drop_missing_def", "pad_with_mean")

Value

  • dataframe

See Also

Other xmu internal not for end user: umxModel(), umxRenameMatrix(), umxTwinMaker(), umx_APA_pval(), umx_fun_mean_sd(), umx_get_bracket_addresses(), umx_make(), umx_standardize(), umx_string_to_algebra(), umx, xmuHasSquareBrackets(), xmuLabel_MATRIX_Model(), xmuLabel_Matrix(), xmuLabel_RAM_Model(), xmuMI(), xmuMakeDeviationThresholdsMatrices(), xmuMakeOneHeadedPathsFromPathList(), xmuMakeTwoHeadedPathsFromPathList(), xmuMaxLevels(), xmuMinLevels(), xmuPropagateLabels(), xmuRAM2Ordinal(), xmuTwinSuper_Continuous(), xmuTwinUpgradeMeansToCovariateModel(), xmu_CI_merge(), xmu_CI_stash(), xmu_DF_to_mxData_TypeCov(), xmu_cell_is_on(), xmu_check_levels_identical(), xmu_check_needs_means(), xmu_check_variance(), xmu_clean_label(), xmu_data_missing(), xmu_data_swap_a_block(), xmu_describe_data_WLS(), xmu_dot_make_paths(), xmu_dot_make_residuals(), xmu_dot_maker(), xmu_dot_move_ranks(), xmu_dot_rank_str(), xmu_extract_column(), xmu_get_CI(), xmu_lavaan_process_group(), xmu_make_TwinSuperModel(), xmu_make_bin_cont_pair_data(), xmu_make_mxData(), xmu_match.arg(), xmu_name_from_lavaan_str(), xmu_path2twin(), xmu_path_regex(), xmu_safe_run_summary(), xmu_set_sep_from_suffix(), xmu_show_fit_or_comparison(), xmu_simplex_corner(), xmu_standardize_ACEcov(), xmu_standardize_ACEv(), xmu_standardize_ACE(), xmu_standardize_CP(), xmu_standardize_IP(), xmu_standardize_RAM(), xmu_standardize_SexLim(), xmu_standardize_Simplex(), xmu_start_value_list(), xmu_starts(), xmu_twin_add_WeightMatrices(), xmu_twin_check(), xmu_twin_get_var_names(), xmu_twin_upgrade_selDvs2SelVars()

Examples

Run this code
# NOT RUN {
data(twinData)
sum(is.na(twinData$ht1))
df = xmu_PadAndPruneForDefVars(twinData, varNames = "ht", defNames = "wt", c("1", "2"))
# }

Run the code above in your browser using DataLab