Methods for Adaptive Shrinkage, using Empirical Bayes
Description
The R package 'ashr' implements an Empirical Bayes
approach for large-scale hypothesis testing and false discovery
rate (FDR) estimation based on the methods proposed in
M. Stephens, 2016, "False discovery rates: a new deal",
. These methods can be applied
whenever two sets of summary statistics---estimated effects and
standard errors---are available, just as 'qvalue' can be applied
to previously computed p-values. Two main interfaces are
provided: ash(), which is more user-friendly; and ash.workhorse(),
which has more options and is geared toward advanced users. The
ash() and ash.workhorse() also provides a flexible modeling
interface that can accommodate a variety of likelihoods (e.g.,
normal, Poisson) and mixture priors (e.g., uniform, normal).