Learn R Programming

clustrd (version 0.1.2)

groupals: groupals

Description

Implements a constrained homogeneity analysis to take into account the cluster structure of objects as described in Van Buuren and Heiser (1989).

Usage

groupals(data,nclus,ndim,nstart=100,smartStart=F,seed=1234)

Arguments

data
categorical dataset
nclus
number of clusters
ndim
dimensionality of the solution
nstart
number of random starts
smartStart
If TRUE then starting values are obtained with fuzzy c-means
seed
seed is used to set the random number seed when smartStart = FALSE

Value

obscoord
object scores
attcoord
attribute scores
centroid
cluster centroids
cluID
cluster membership
criterion
optimal value of the objective function

References

Van Buuren, S. and Heiser, W. J. (1989). Clustering n objects in k groups under optimal scaling of variables, Psychometrika, 54, 699-706.

See Also

MCAk, fuzzyMCAk, iFCB

Examples

Run this code
     data(underwear)
     attlab = c(c(1:15),"by","tr","vm","jd","ml","bn","bg","ck","a1","a2","a3")
     outgroupals <- groupals(underwear,nclus=3,ndim=2,nstart=1,smartStart=TRUE,seed=1234)
     plotrd(outgroupals,attlabel=attlab)

Run the code above in your browser using DataLab