Learn R Programming

⚠️There's a newer version (5.2.3) of this package.Take me there.

coloc

The coloc package can be used to perform genetic colocalisation analysis of two potentially related phenotypes, to ask whether they share common genetic causal variant(s) in a given region.

For usage and background, see the vignette at https://chr1swallace.github.io/coloc

Key references are:

To generate vignettes:

cp vignettes/colocqq-tests.R.tospin vignettes/colocqq-tests.R && Rscript -e 'knitr::spin("vignettes/colocqq-tests.R",knit=FALSE); devtools::build_vignettes()'

To generate website:

https://chr1swallace.github.io/coloc/

Rscript -e "pkgdown::build_site()"

Copy Link

Version

Install

install.packages('coloc')

Monthly Downloads

1,368

Version

3.2-1

License

GPL

Issues

Pull Requests

Stars

Forks

Maintainer

Last Published

May 17th, 2019

Functions in coloc (3.2-1)

approx.bf.estimates

Internal function, approx.bf.estimates
coloc.test

Function to do colocalisation tests of two traits
coloc.test.summary

Colocalisation testing using regression coefficients
colocPCs-class

Class "colocPCs"
coloc.abf.datasets

Bayesian colocalisation analysis using data.frames
combine.abf

combine.abf
pcs.prepare

Functions to prepare principle component models for colocalisation testing
plot

Plotting functions for the coloc package
process.dataset

process.dataset
bf

Bayes factors to compare specific values of eta
coloc-class

Classes "coloc" and "colocBayes"
coloc-package

Colocalisation tests of two genetic traits
coloc.abf.snpStats

Bayesian colocalisation analysis using snpStats objects
colocABF-class

Class "colocABF" holds objects returned by the coloc.abf function
coloc.abf

Fully Bayesian colocalisation analysis using Bayes Factors
eta

Methods to extract information from a coloc or colocBayes object
finemap.abf

Bayesian finemapping analysis
fillin

Impute missing genotypes
sdY.est

Estimate trait variance, internal function
logsum

logsum
logdiff

logdiff
pcs.model

pcs.model
coloc.bma

Wrapper to use colocalization testing within a Bayesian model averaging structure.
approx.bf.p

Internal function, approx.bf.p
Var.data

Var.data
Var.data.cc

Var.data