Learn R Programming

matrixcalc (version 1.0-6)

Collection of Functions for Matrix Calculations

Description

A collection of functions to support matrix calculations for probability, econometric and numerical analysis. There are additional functions that are comparable to APL functions which are useful for actuarial models such as pension mathematics. This package is used for teaching and research purposes at the Department of Finance and Risk Engineering, New York University, Polytechnic Institute, Brooklyn, NY 11201. Horn, R.A. (1990) Matrix Analysis. ISBN 978-0521386326. Lancaster, P. (1969) Theory of Matrices. ISBN 978-0124355507. Lay, D.C. (1995) Linear Algebra: And Its Applications. ISBN 978-0201845563.

Copy Link

Version

Install

install.packages('matrixcalc')

Monthly Downloads

9,509

Version

1.0-6

License

GPL (>= 2)

Maintainer

Last Published

September 14th, 2022

Functions in matrixcalc (1.0-6)

H.matrices

List of H Matrices
creation.matrix

Creation Matrix
commutation.matrix

Commutation matrix for r by c numeric matrices
K.matrix

K Matrix
T.matrices

List of T Matrices
N.matrix

Construct N Matrix
E.matrices

List of E Matrices
D.matrix

Duplication matrix
L.matrix

Construct L Matrix
direct.prod

Direct prod of two arrays
fibonacci.matrix

Fibonacci Matrix
elimination.matrix

Elimination matrix for lower triangular matrices
frobenius.matrix

Frobenius Matrix
direct.sum

Direct sum of two arrays
hadamard.prod

Hadamard product of two matrices
frobenius.prod

Frobenius innter product of matrices
entrywise.norm

Compute the entrywise norm of a matrix
frobenius.norm

Compute the Frobenius norm of a matrix
hankel.matrix

Hankel Matrix
duplication.matrix

Duplication matrix for n by n matrices
inf.norm

Compute the infinitity norm of a matrix
is.idempotent.matrix

Test for idempotent square matrix
is.non.singular.matrix

Test if matrix is non-singular
hilbert.schmidt.norm

Compute the Hilbert-Schmidt norm of a matrix
hilbert.matrix

Hilbert matrices
matrix.rank

Rank of a square matrix
matrix.power

Matrix Raised to a Power
is.diagonal.matrix

Test for diagonal square matrix
is.indefinite

Test matrix for positive indefiniteness
is.skew.symmetric.matrix

Test for a skew-symmetric matrix
lu.decomposition

LU Decomposition of Square Matrix
is.positive.definite

Test matrix for positive definiteness
one.norm

Compute the one norm of a matrix
is.square.matrix

Test for square matrix
is.singular.matrix

Test for singular square matrix
matrix.inverse

Inverse of a square matrix
is.positive.semi.definite

Test matrix for positive semi-definiteness
is.negative.semi.definite

Test matrix for negative semi definiteness
is.negative.definite

Test matrix for negative definiteness
lower.triangle

Lower triangle portion of a matrix
pascal.matrix

Pascal matrix
is.symmetric.matrix

Test for symmetric numeric matrix
shift.down

Shift matrix m rows down
set.submatrix

Store matrix inside another matrix
%s%

Direct sum of two arrays
matrix.trace

The trace of a matrix
maximum.norm

Maximum norm of matrix
shift.up

Shift matrix m rows up
shift.left

Shift a matrix n columns to the left
shift.right

Shift matrix n columns to the right
vec

Vectorize a matrix
spectral.norm

Spectral norm of matrix
stirling.matrix

Stirling Matrix
upper.triangle

Upper triangle portion of a matrix
vandermonde.matrix

Vandermonde matrix
svd.inverse

SVD Inverse of a square matrix
symmetric.pascal.matrix

Symmetric Pascal matrix
u.vectors

u vectors of an identity matrix
vech

Vectorize a matrix
toeplitz.matrix

Toeplitz Matrix