Learn R Programming

parameters

Describe and understand your model’s parameters!

parameters’ primary goal is to provide utilities for processing the parameters of various statistical models (see here for a list of supported models). Beyond computing p-values, CIs, Bayesian indices and other measures for a wide variety of models, this package implements features like bootstrapping of parameters and models, feature reduction (feature extraction and variable selection), or tools for data reduction like functions to perform cluster, factor or principal component analysis.

Another important goal of the parameters package is to facilitate and streamline the process of reporting results of statistical models, which includes the easy and intuitive calculation of standardized estimates or robust standard errors and p-values. parameters therefor offers a simple and unified syntax to process a large variety of (model) objects from many different packages.

Installation

TypeSourceCommand
ReleaseCRANinstall.packages("parameters")
Developmentr - universeinstall.packages("parameters", repos = "https://easystats.r-universe.dev")
DevelopmentGitHubremotes::install_github("easystats/parameters")

Tip

Instead of library(parameters), use library(easystats). This will make all features of the easystats-ecosystem available.

To stay updated, use easystats::install_latest().

Documentation

Click on the buttons above to access the package documentation and the easystats blog, and check-out these vignettes:

Contributing and Support

In case you want to file an issue or contribute in another way to the package, please follow this guide. For questions about the functionality, you may either contact us via email or also file an issue.

Features

Model’s parameters description

The model_parameters() function (that can be accessed via the parameters() shortcut) allows you to extract the parameters and their characteristics from various models in a consistent way. It can be considered as a lightweight alternative to broom::tidy(), with some notable differences:

  • The column names of the returned data frame are specific to their content. For instance, the column containing the statistic is named following the statistic name, i.e., t, z, etc., instead of a generic name such as statistic (however, you can get standardized (generic) column names using standardize_names()).
  • It is able to compute or extract indices not available by default, such as p-values, CIs, etc.
  • It includes feature engineering capabilities, including parameters bootstrapping.

Classical Regression Models

model <- lm(Sepal.Width ~ Petal.Length * Species + Petal.Width, data = iris)

# regular model parameters
model_parameters(model)
#> Parameter                           | Coefficient |   SE |         95% CI | t(143) |      p
#> -------------------------------------------------------------------------------------------
#> (Intercept)                         |        2.89 | 0.36 | [ 2.18,  3.60] |   8.01 | < .001
#> Petal Length                        |        0.26 | 0.25 | [-0.22,  0.75] |   1.07 | 0.287 
#> Species [versicolor]                |       -1.66 | 0.53 | [-2.71, -0.62] |  -3.14 | 0.002 
#> Species [virginica]                 |       -1.92 | 0.59 | [-3.08, -0.76] |  -3.28 | 0.001 
#> Petal Width                         |        0.62 | 0.14 | [ 0.34,  0.89] |   4.41 | < .001
#> Petal Length × Species [versicolor] |       -0.09 | 0.26 | [-0.61,  0.42] |  -0.36 | 0.721 
#> Petal Length × Species [virginica]  |       -0.13 | 0.26 | [-0.64,  0.38] |  -0.50 | 0.618

# standardized parameters
model_parameters(model, standardize = "refit")
#> Parameter                           | Coefficient |   SE |         95% CI | t(143) |      p
#> -------------------------------------------------------------------------------------------
#> (Intercept)                         |        3.59 | 1.30 | [ 1.01,  6.17] |   2.75 | 0.007 
#> Petal Length                        |        1.07 | 1.00 | [-0.91,  3.04] |   1.07 | 0.287 
#> Species [versicolor]                |       -4.62 | 1.31 | [-7.21, -2.03] |  -3.53 | < .001
#> Species [virginica]                 |       -5.51 | 1.38 | [-8.23, -2.79] |  -4.00 | < .001
#> Petal Width                         |        1.08 | 0.24 | [ 0.59,  1.56] |   4.41 | < .001
#> Petal Length × Species [versicolor] |       -0.38 | 1.06 | [-2.48,  1.72] |  -0.36 | 0.721 
#> Petal Length × Species [virginica]  |       -0.52 | 1.04 | [-2.58,  1.54] |  -0.50 | 0.618

# heteroscedasticity-consitent SE and CI
model_parameters(model, vcov = "HC3")
#> Parameter                           | Coefficient |   SE |         95% CI | t(143) |      p
#> -------------------------------------------------------------------------------------------
#> (Intercept)                         |        2.89 | 0.43 | [ 2.03,  3.75] |   6.66 | < .001
#> Petal Length                        |        0.26 | 0.29 | [-0.30,  0.83] |   0.92 | 0.357 
#> Species [versicolor]                |       -1.66 | 0.53 | [-2.70, -0.62] |  -3.16 | 0.002 
#> Species [virginica]                 |       -1.92 | 0.77 | [-3.43, -0.41] |  -2.51 | 0.013 
#> Petal Width                         |        0.62 | 0.12 | [ 0.38,  0.85] |   5.23 | < .001
#> Petal Length × Species [versicolor] |       -0.09 | 0.29 | [-0.67,  0.48] |  -0.32 | 0.748 
#> Petal Length × Species [virginica]  |       -0.13 | 0.31 | [-0.73,  0.48] |  -0.42 | 0.675

Mixed Models

library(lme4)
model <- lmer(Sepal.Width ~ Petal.Length + (1 | Species), data = iris)

# model parameters with CI, df and p-values based on Wald approximation
model_parameters(model)
#> # Fixed Effects
#> 
#> Parameter    | Coefficient |   SE |       95% CI | t(146) |      p
#> ------------------------------------------------------------------
#> (Intercept)  |        2.00 | 0.56 | [0.89, 3.11] |   3.56 | < .001
#> Petal Length |        0.28 | 0.06 | [0.16, 0.40] |   4.75 | < .001
#> 
#> # Random Effects
#> 
#> Parameter               | Coefficient |   SE |       95% CI
#> -----------------------------------------------------------
#> SD (Intercept: Species) |        0.89 | 0.46 | [0.33, 2.43]
#> SD (Residual)           |        0.32 | 0.02 | [0.28, 0.35]

# model parameters with CI, df and p-values based on Kenward-Roger approximation
model_parameters(model, ci_method = "kenward", effects = "fixed")
#> # Fixed Effects
#> 
#> Parameter    | Coefficient |   SE |       95% CI |    t |     df |      p
#> -------------------------------------------------------------------------
#> (Intercept)  |        2.00 | 0.57 | [0.07, 3.93] | 3.53 |   2.67 | 0.046 
#> Petal Length |        0.28 | 0.06 | [0.16, 0.40] | 4.58 | 140.98 | < .001

Structural Models

Besides many types of regression models and packages, it also works for other types of models, such as structural models (EFA, CFA, SEM…).

library(psych)

model <- psych::fa(attitude, nfactors = 3)
model_parameters(model)
#> # Rotated loadings from Factor Analysis (oblimin-rotation)
#> 
#> Variable   |  MR1  |  MR2  |  MR3  | Complexity | Uniqueness
#> ------------------------------------------------------------
#> rating     | 0.90  | -0.07 | -0.05 |    1.02    |    0.23   
#> complaints | 0.97  | -0.06 | 0.04  |    1.01    |    0.10   
#> privileges | 0.44  | 0.25  | -0.05 |    1.64    |    0.65   
#> learning   | 0.47  | 0.54  | -0.28 |    2.51    |    0.24   
#> raises     | 0.55  | 0.43  | 0.25  |    2.35    |    0.23   
#> critical   | 0.16  | 0.17  | 0.48  |    1.46    |    0.67   
#> advance    | -0.11 | 0.91  | 0.07  |    1.04    |    0.22   
#> 
#> The 3 latent factors (oblimin rotation) accounted for 66.60% of the total variance of the original data (MR1 = 38.19%, MR2 = 22.69%, MR3 = 5.72%).

Variable and parameters selection

select_parameters() can help you quickly select and retain the most relevant predictors using methods tailored for the model type.

lm(disp ~ ., data = mtcars) |>
  select_parameters() |>
  model_parameters()
#> Parameter   | Coefficient |     SE |            95% CI | t(26) |      p
#> -----------------------------------------------------------------------
#> (Intercept) |      141.70 | 125.67 | [-116.62, 400.02] |  1.13 | 0.270 
#> cyl         |       13.14 |   7.90 | [  -3.10,  29.38] |  1.66 | 0.108 
#> hp          |        0.63 |   0.20 | [   0.22,   1.03] |  3.18 | 0.004 
#> wt          |       80.45 |  12.22 | [  55.33, 105.57] |  6.58 | < .001
#> qsec        |      -14.68 |   6.14 | [ -27.31,  -2.05] | -2.39 | 0.024 
#> carb        |      -28.75 |   5.60 | [ -40.28, -17.23] | -5.13 | < .001

Citation

In order to cite this package, please use the following command:

citation("parameters")
To cite package 'parameters' in publications use:

  Lüdecke D, Ben-Shachar M, Patil I, Makowski D (2020). "Extracting,
  Computing and Exploring the Parameters of Statistical Models using
  R." _Journal of Open Source Software_, *5*(53), 2445.
  doi:10.21105/joss.02445 <https://doi.org/10.21105/joss.02445>.

A BibTeX entry for LaTeX users is

  @Article{,
    title = {Extracting, Computing and Exploring the Parameters of Statistical Models using {R}.},
    volume = {5},
    doi = {10.21105/joss.02445},
    number = {53},
    journal = {Journal of Open Source Software},
    author = {Daniel Lüdecke and Mattan S. Ben-Shachar and Indrajeet Patil and Dominique Makowski},
    year = {2020},
    pages = {2445},
  }

Code of Conduct

Please note that the parameters project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.

Copy Link

Version

Install

install.packages('parameters')

Monthly Downloads

82,467

Version

0.22.0

License

GPL-3

Maintainer

Last Published

June 20th, 2024

Functions in parameters (0.22.0)

.n_factors_bartlett

Bartlett, Anderson and Lawley Procedures
.n_factors_bentler

Bentler and Yuan's Procedure
.factor_to_dummy

Safe transformation from factor/character to numeric
.data_frame

help-functions
dominance_analysis

Dominance Analysis
.filter_component

for models with zero-inflation component, return required component of model-summary
display.parameters_model

Print tables in different output formats
degrees_of_freedom

Degrees of Freedom (DoF)
format_p_adjust

Format the name of the p-value adjustment methods
format_parameters

Parameter names formatting
format_df_adjust

Format the name of the degrees-of-freedom adjustment methods
format_order

Order (first, second, ...) formatting
.n_factors_cng

Cattell-Nelson-Gorsuch CNG Indices
.n_factors_sescree

Standard Error Scree and Coefficient of Determination Procedures
.n_factors_mreg

Multiple Regression Procedure
.n_factors_scree

Non Graphical Cattell's Scree Test
equivalence_test.lm

Equivalence test
fish

Sample data set
get_scores

Get Scores from Principal Component Analysis (PCA)
model_parameters.BFBayesFactor

Parameters from BayesFactor objects
model_parameters.glht

Parameters from Hypothesis Testing
model_parameters.befa

Parameters from Bayesian Exploratory Factor Analysis
model_parameters.dbscan

Parameters from Cluster Models (k-means, ...)
model_parameters.glimML

Parameters from special models
model_parameters.default

Parameters from (General) Linear Models
model_parameters.htest

Parameters from hypothesis tests
model_parameters

Model Parameters
model_parameters.cgam

Parameters from Generalized Additive (Mixed) Models
model_parameters.aov

Parameters from ANOVAs
model_parameters.cpglmm

Parameters from Mixed Models
p_calibrate

Calculate calibrated p-values.
model_parameters.rma

Parameters from Meta-Analysis
model_parameters.zcpglm

Parameters from Zero-Inflated Models
model_parameters.DirichletRegModel

Parameters from multinomial or cumulative link models
model_parameters.PCA

Parameters from PCA, FA, CFA, SEM
n_factors

Number of components/factors to retain in PCA/FA
model_parameters.t1way

Parameters from robust statistical objects in WRS2
n_clusters

Find number of clusters in your data
model_parameters.mipo

Parameters from multiply imputed repeated analyses
model_parameters.MCMCglmm

Parameters from Bayesian Models
p_value.DirichletRegModel

p-values for Models with Special Components
p_value.BFBayesFactor

p-values for Bayesian Models
p_value.zcpglm

p-values for Models with Zero-Inflation
ci_satterthwaite

Satterthwaite approximation for SEs, CIs and p-values
ci_betwithin

Between-within approximation for SEs, CIs and p-values
p_value

p-values
ci_kenward

Kenward-Roger approximation for SEs, CIs and p-values
p_value.poissonmfx

p-values for Marginal Effects Models
ci_ml1

"m-l-1" approximation for SEs, CIs and p-values
p_function

p-value or consonance function
format.parameters_model

Print model parameters
pool_parameters

Pool Model Parameters
random_parameters

Summary information from random effects
parameters-package

parameters: Extracting, Computing and Exploring the Parameters of Statistical Models using R
parameters_type

Type of model parameters
predict.parameters_clusters

Predict method for parameters_clusters objects
reduce_parameters

Dimensionality reduction (DR) / Features Reduction
simulate_parameters.glmmTMB

Simulate Model Parameters
reexports

Objects exported from other packages
standard_error

Standard Errors
select_parameters

Automated selection of model parameters
standardize_parameters

Parameters standardization
standardize_info

Get Standardization Information
qol_cancer

Sample data set
factor_analysis

Principal Component Analysis (PCA) and Factor Analysis (FA)
sort_parameters

Sort parameters by coefficient values
format.compare_parameters

Print comparisons of model parameters
reshape_loadings

Reshape loadings between wide/long formats
simulate_model

Simulated draws from model coefficients
bootstrap_model

Model bootstrapping
cluster_analysis

Cluster Analysis
cluster_performance

Performance of clustering models
cluster_meta

Metaclustering
cluster_centers

Find the cluster centers in your data
bootstrap_parameters

Parameters bootstrapping
cluster_discrimination

Compute a linear discriminant analysis on classified cluster groups
convert_efa_to_cfa

Conversion between EFA results and CFA structure
ci.default

Confidence Intervals (CI)
compare_parameters

Compare model parameters of multiple models