Learn R Programming

plsdof (version 0.2-1)

kernel.pls.fit: Kernel Partial Least Squares Fit

Description

This function computes the Partial Least Squares fit. This algorithm scales mainly in the number of observations.

Usage

kernel.pls.fit(X, y, m, compute.jacobian,DoF.max)

Arguments

X
matrix of predictor observations.
y
vector of response observations. The length of y is the same as the number of rows of X.
m
maximal number of Partial Least Squares components. Default is m=ncol(X).
compute.jacobian
Should the first derivative of the regression coefficients be computed as well? Default is FALSE
DoF.max
upper bound on the Degrees of Freedom. Default is min(ncol(X)+1,nrow(X)-1).

Value

  • coefficientsmatrix of regression coefficients
  • interceptvector of regression intercepts
  • DoFDegrees of Freedom
  • sigmahatvector of estimated model error
  • Yhatmatrix of fitted values
  • yhatvector of squared length of fitted values
  • RSSvector of residual sum of error
  • covarianceNULL object.
  • TTmatrix of normalized PLS components

Details

We first standardize X to zero mean and unit variance.

References

Kraemer, N., Sugiyama M. (2010). "The Degrees of Freedom of Partial Least Squares Regression". preprint, http://arxiv.org/abs/1002.4112 Kraemer, N., Braun, M.L. (2007) "Kernelizing PLS, Degrees of Freedom, and Efficient Model Selection", Proceedings of the 24th International Conference on Machine Learning, Omni Press, 441 - 448

See Also

linear.pls.fit, pls.cv,pls.model, pls.ic

Examples

Run this code
n<-50 # number of observations
p<-5 # number of variables
X<-matrix(rnorm(n*p),ncol=p)
y<-rnorm(n)


pls.object<-kernel.pls.fit(X,y,m=5,compute.jacobian=TRUE)

Run the code above in your browser using DataLab