Perform kernel PCA decomposition using kernlab::kpca
d.KPCA(x, x.test = NULL, k = 2, th = 1e-04, kernel = "rbfdot",
kpar = NULL, scale = TRUE, center = FALSE, verbose = TRUE, ...)
Input data
Optional test set. Will be projected on to KPCA basis
Integer vector of length 1 or greater. N of components to return
If set to 0, th
determines eigenvalue below which PCs are ignored
Threshold for eigenvalue below which PCs are ignored if k
is set to 0
String: Type of kernel to use. See kernlab::kpca
List of hyperparameters: See kernlab::kpca("kpar")
Logical: If TRUE, scale input data before projecting
Logical: If TRUE, also center input data if scale
is TRUE
Logical: If TRUE, print messages to screen. Default = TRUE
Additional parameters to be passed to fastKPCA::fastKPCA
rtDecom object
Project scaled variables to KPCA components. Input must be n by p, where n represents number of cases, and p represents number of features. KPCA will be applied to the transpose of the n x p matrix.
Other Decomposition: d.CUR
,
d.H2OAE
, d.H2OGLRM
,
d.ICA
, d.ISOMAP
,
d.LLE
, d.MDS
,
d.NMF
, d.PCA
,
d.SPCA
, d.SVD
,
d.TSNE
, d.UMAP