Perform LLE decomposition using lle::lle
d.LLE(x, k = 2, nn = 0, nn.min = 1, nn.max = 20,
plot.calcnn = FALSE, id = FALSE, iLLE = FALSE, nnk = TRUE,
reg = 2, v = 0.9, verbose = TRUE, n.cores = 1, ...)
Input data
Integer vector of length 1 or greater. Rank of decomposition
Integer: Number of neighbors. If Set to 0 (default), will use lle::calc_k
to
estimate optimal number
Integer: Minimum n of neighbors to consider in search, used if nn = 0
Integer: Maximum n of enighbors to consider in search, used if nn = 0
Logical: If TRUE, print plot after estimation of number of neighbors. Default = FALSE
Logical: If TRUE, calculate k
(the intrinsic dimension)
Logical: If TRUE, use the improved LLE algorithm; see Details in lle::lle
Notice: It causes warnings for matrix dimensions (check lle
code)
Logical: If TRUE, use k nearest neighbors method; otherwise, epsilon environment neighbourhood will be used
Integer 1, 2, 3: Regularization methods: See lle::lle("reg")
Float: Threshold value for intrinsic dimension estimation. Suggestion for noiseless data: .99, for noisy data: .9. Default = .9
Logical: If TRUE, print messages to screen. Default = TRUE
Integer: Number of cores to use. Default = 1. At some point using more than one cores stopped working.
The lle
package has not been updated since February 2015 - we will switch to a different implementation soon
Additional parameters to be passed to LLE::LLE
rtDecom object
Project scaled variables to LLE components Input must be n by p, where n represents number of cases, and p represents number of features. LLE will be applied to the transpose of the n x p matrix.
Other Decomposition: d.CUR
,
d.H2OAE
, d.H2OGLRM
,
d.ICA
, d.ISOMAP
,
d.KPCA
, d.MDS
,
d.NMF
, d.PCA
,
d.SPCA
, d.SVD
,
d.TSNE
, d.UMAP