Perform PCA decomposition using stats::prcomp
d.PCA(x, x.test = NULL, k = NULL, scale = TRUE, center = TRUE,
verbose = TRUE, ...)Input matrix
Optional test set. Will be projected on to PCA basis
Integer: Number of right singular vectors to compute (svd's nv)
Logical: If TRUE, scale input data before doing SVD
Logical: If TRUE, also center input data if scale is TRUE
Logical: If TRUE, print messages to screen. Default = TRUE
Additional parameters to be passed to PCA::PCA
rtDecom object
Same solution as d.SVD. d.PCA runs prcomp, which has useful
summary output
Other Decomposition: d.CUR,
d.H2OAE, d.H2OGLRM,
d.ICA, d.ISOMAP,
d.KPCA, d.LLE,
d.MDS, d.NMF,
d.SPCA, d.SVD,
d.TSNE, d.UMAP