Perform PCA decomposition using stats::prcomp
d.PCA(x, x.test = NULL, k = NULL, scale = TRUE, center = TRUE,
verbose = TRUE, ...)
Input matrix
Optional test set. Will be projected on to PCA basis
Integer: Number of right singular vectors to compute (svd
's nv
)
Logical: If TRUE, scale input data before doing SVD
Logical: If TRUE, also center input data if scale
is TRUE
Logical: If TRUE, print messages to screen. Default = TRUE
Additional parameters to be passed to PCA::PCA
rtDecom object
Same solution as d.SVD. d.PCA runs prcomp
, which has useful
summary
output
Other Decomposition: d.CUR
,
d.H2OAE
, d.H2OGLRM
,
d.ICA
, d.ISOMAP
,
d.KPCA
, d.LLE
,
d.MDS
, d.NMF
,
d.SPCA
, d.SVD
,
d.TSNE
, d.UMAP