Perform sparse and/or non-negative PCA or cumulative PCA decomposition
using nsprcomp::nsprcomp
or nsprcomp::nscumcomp
respectively
d.SPCA(x, x.test = NULL, k = 1, nz = 0.5 * NCOL(x), nneg = TRUE,
method = c("cumulative", "vanilla"), scale = TRUE, center = FALSE,
verbose = TRUE, ...)
Input matrix
Optional test set. Will be projected on to SPCA basis
Integer vector of length 1 or greater. N of components to return
If set to 0, th
determines eigenvalue below which PCs are ignored
Integer: Upper bound on non-zero loadings. See nsprcomp::nscumcomp("k")
Logical: If TRUE, calculate non-negative loadings only. Default = TRUE
String: "cumulative" or "vanilla" sparse PCA. Default = "cumulative"
LogSPCAl: If TRUE, scale input data before projecting. Default = TRUE
LogSPCAl: If TRUE, also center input data if scale
is TRUE
. Default = FALSE
Logical: If TRUE, print messages to screen. Default = TRUE
Additional parameters to be passed to fastSPCA::fastSPCA
rtDecom object
Project scaled variables to sparse and/or non-negative PCA components. Input must be n by p, where n represents number of cases, and p represents number of features. SPCA will be applied to the transpose of the n x p matrix.
Other Decomposition: d.CUR
,
d.H2OAE
, d.H2OGLRM
,
d.ICA
, d.ISOMAP
,
d.KPCA
, d.LLE
,
d.MDS
, d.NMF
,
d.PCA
, d.SVD
,
d.TSNE
, d.UMAP