Learn R Programming

rtemis (version 0.79)

u.CMEANS: Fuzzy C-means Clustering

Description

Perform fuzzy C-means clustering using e1071::cmeans

Usage

u.CMEANS(x, k = 2, iter.max = 100, dist = "euclidean",
  method = "cmeans", m = 2, rate.par = NULL, weights = 1,
  control = list(), verbose = TRUE, ...)

Arguments

x

Input matrix / data.frame

k

Integer: Number of clusters to get

iter.max

Integer: Maximum number of iterations

dist

String: Distance measure to use: 'euclidean' or 'manhattan'

method

String: "cmeans" - fuzzy c-means clustering; "ufcl": on-line update

m

Float (>1): Degree of fuzzification. Default = 2

rate.par

Float (0, 1): Learning rate for the online variant. (Default = .3)

weights

Float (>0): Case weights

control

List of control parameters. See e1071::cmeans

verbose

Logical: If TRUE, print messages to screen

...

Additional parameters to be passed to e1071::cmeans

Value

rtClust object

See Also

Other Clustering: u.EMC, u.H2OKMEANS, u.HARDCL, u.HOPACH, u.KMEANS, u.NGAS, u.PAMK, u.PAM, u.SPEC