Perform fuzzy C-means clustering using e1071::cmeans
u.CMEANS(x, k = 2, iter.max = 100, dist = "euclidean",
method = "cmeans", m = 2, rate.par = NULL, weights = 1,
control = list(), verbose = TRUE, ...)Input matrix / data.frame
Integer: Number of clusters to get
Integer: Maximum number of iterations
String: Distance measure to use: 'euclidean' or 'manhattan'
String: "cmeans" - fuzzy c-means clustering; "ufcl": on-line update
Float (>1): Degree of fuzzification. Default = 2
Float (0, 1): Learning rate for the online variant. (Default = .3)
Float (>0): Case weights
List of control parameters. See e1071::cmeans
Logical: If TRUE, print messages to screen
Additional parameters to be passed to e1071::cmeans
rtClust object
Other Clustering: u.EMC,
u.H2OKMEANS, u.HARDCL,
u.HOPACH, u.KMEANS,
u.NGAS, u.PAMK,
u.PAM, u.SPEC