Perform clustering by Hard Competitive Learning using flexclust::cclust
u.HARDCL(x, x.test = NULL, k = 2, dist = "euclidean",
verbose = TRUE, ...)Input matrix / data.frame
Testing set matrix / data.frame
Integer: Number of clusters to get
String: Distance measure to use: 'euclidean' or 'manhattan'
Logical: If TRUE, print messages to screen
Additional parameters to be passed to flexclust::cclust
Other Clustering: u.CMEANS,
u.EMC, u.H2OKMEANS,
u.HOPACH, u.KMEANS,
u.NGAS, u.PAMK,
u.PAM, u.SPEC