K-Means clustering using h2o::h2o.kmeans
Check out the H2O Flow at [ip]:[port]
, Default IP:port is "localhost:54321"
e.g. if running on localhost, point your web browser to localhost:54321
u.H2OKMEANS(x, x.test = NULL, k = 2, estimate.k = FALSE,
nfolds = 0, max.iterations = 10, ip = "localhost", port = 54321,
n.cores = rtCores, seed = -1, init = c("Furthest", "Random",
"PlusPlus", "User"), categorical.encoding = c("AUTO", "Enum",
"OneHotInternal", "OneHotExplicit", "Binary", "Eigen", "LabelEncoder",
"SortByResponse", "EnumLimited"), verbose = TRUE, ...)
Input matrix / data.frame
Testing set matrix / data.frame
Integer: Number of clusters to get
Logical: if TRUE, estimate k up to a maximum set by the k
argument
Integer: Number of cross-validation folds
Integer: Maximum number of iterations
String: IP address of H2O server. Default = "localhost"
Integer: Port number of H2O server. Default = 54321
Integer: Number of cores to use
Integer: Seed for H2O's random number generator. Default = -1 (time-based ranodm number)
String: Initialization mode: "Furthest", "Random", "PlusPlus", "User". Default = "Furthest"
String: How to encode categorical variables: "AUTO", "Enum", "OneHotInternal", "OneHotExplicit", "Binary", "Eigen", "LabelEncoder", "SortByResponse", "EnumLimited". Default = "AUTO"
Logical: If TRUE, print messages to screen
Additional arguments to pass to h2p::h2o.kmeans
rtMod object
For additional information, see help on h2o::h2o.kmeans
Other Clustering: u.CMEANS
,
u.EMC
, u.HARDCL
,
u.HOPACH
, u.KMEANS
,
u.NGAS
, u.PAMK
,
u.PAM
, u.SPEC