Perform PAM clustering using cluster::pam
u.PAM(x, k = 2, diss = FALSE, metric = "euclidean", do.swap = TRUE,
verbose = TRUE, ...)Input matrix / data.frame
Integer: Number of clusters to get
Logical: If TRUE, x should be a dist or dissimilarity matrix.
Otherwise, x should be a matrix of cases by features. Default = FALSE
String: Dissimilarity metric to be used. Options: 'euclidean', 'manhattan'
Logical: If TRUE, perform the swap phase (See cluster::pam), as in the
original PAM algorithm. This is computationally intensive and can be skipped. Default = TRUE
Logical: If TRUE, print messages to screen
Additional parameters to be passed to cluster::pam
Other Clustering: u.CMEANS,
u.EMC, u.H2OKMEANS,
u.HARDCL, u.HOPACH,
u.KMEANS, u.NGAS,
u.PAMK, u.SPEC