Learn R Programming

DIscBIO (version 1.2.2)

A User-Friendly Pipeline for Biomarker Discovery in Single-Cell Transcriptomics

Description

An open, multi-algorithmic pipeline for easy, fast and efficient analysis of cellular sub-populations and the molecular signatures that characterize them. The pipeline consists of four successive steps: data pre-processing, cellular clustering with pseudo-temporal ordering, defining differential expressed genes and biomarker identification. More details on Ghannoum et. al. (2021) . This package implements extensions of the work published by Ghannoum et. al. (2019) .

Copy Link

Version

Install

install.packages('DIscBIO')

Monthly Downloads

238

Version

1.2.2

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Last Published

November 6th, 2023

Functions in DIscBIO (1.2.2)

NoiseFiltering

Noise Filtering
PPI

Defining protein-protein interactions (PPI) over a list of genes,
PlotMBpca

Plotting pseudo-time ordering or gene expression in Model-based clustering in PCA
foldchange.seq.twoclass.unpaired

Foldchange of twoclass unpaired sequencing data
RpartDT

RPART Decision Tree
PlotmclustMB

Plotting the Model-based clusters in PCA.
retrieveURL

Retries a URL
customConvertFeats

Automatic Feature Id Conversion.
resa

Resampling
RpartEVAL

Evaluating the performance of the RPART Decision Tree.
VolcanoPlot

Volcano Plot
plottSNE

tSNE map
plotLabelstSNE

tSNE map with labels
pseudoTimeOrdering

Pseudo-time ordering
check.format

Check format
rankcols

Rank columns
as.DISCBIO

Convert Single Cell Data Objects to DISCBIO.
plotOrderTsne

Plotting the pseudo-time ordering in the t-SNE map
plotSilhouette

Silhouette Plot for K-means clustering
clustheatmap

Plotting clusters in a heatmap representation of the cell distances
plotExptSNE

Highlighting gene expression in the t-SNE map
comptSNE

Computing tSNE
plotGap

Plotting Gap Statistics
reformatSiggenes

Reformat Siggenes Table
prepExampleDataset

Prepare Example Dataset
replaceDecimals

Replace Decimals
sammy

Significance analysis of microarrays
plotSymbolstSNE

tSNE map for K-means clustering with symbols
samr.estimate.depth

Estimate sequencing depths
valuesG1msTest

Single-cells data from a myxoid liposarcoma cell line
wilcoxon.unpaired.seq.func

Twoclass Wilcoxon statistics
Clustexp

Clustering of single-cell transcriptome data
FindOutliers

Inference of outlier cells
FinalPreprocessing

Final Preprocessing
DISCBIO

The DISCBIO Class
DEGanalysis2clust

Determining differentially expressed genes (DEGs) between two particular clusters.
DEGanalysis

Determining differentially expressed genes (DEGs) between all individual clusters.
PCAplotSymbols

Plot PCA symbols
Normalizedata

Normalizing and filtering
Networking

Plotting the network.
ClassVectoringDT

Generating a class vector to be used for the decision tree analysis.
ClustDiffGenes

ClustDiffGenes
NetAnalysis

Networking analysis.
Exprmclust

Performing Model-based clustering on expression values
Jaccard

Jaccard’s similarity
J48DTeval

Evaluating the performance of the J48 decision tree.
KmeanOrder

Pseudo-time ordering based on k-means clusters
DISCBIO2SingleCellExperiment

Convert a DISCBIO object to a SingleCellExperiment.
HumanMouseGeneIds

Human and Mouse Gene Identifiers.
J48DT

J48 Decision Tree