Learn R Programming

gmwm (version 2.0.0)

Generalized Method of Wavelet Moments

Description

Generalized Method of Wavelet Moments (GMWM) is an estimation technique for the parameters of time series models. It uses the wavelet variance in a moment matching approach that makes it particularly suitable for the estimation of certain state-space models. Furthermore, there exists a robust implementation of GMWM, which allows the robust estimation of some state-space models and ARIMA models. Lastly, the package provides the ability to quickly generate time series data, perform different wavelet decompositions, and visualizations.

Copy Link

Version

Install

install.packages('gmwm')

Monthly Downloads

20

Version

2.0.0

License

CC BY-NC-SA 4.0

Issues

Pull Requests

Stars

Forks

Maintainer

Stephane Guerrier

Last Published

February 10th, 2016

Functions in gmwm (2.0.0)

ARMAacf_cpp

Compute Theoretical ACF for an ARMA Process
AR

Create an Autoregressive P [AR(P)] Process
arma_to_wv_app

ARMA process to WV approximation
Rcpp_ARIMA

Hook into R's ARIMA function
GM

Create a Gauss-Markov (GM) Process
MA

Create an Moving Average Q [MA(Q)] Process
arma_to_wv

ARMA process to WV
ARMAtoMA_cpp

Converting an ARMA Process to an Infinite MA Process
all_bootstrapper

Bootstrap for Everything!
autoplot.imu2

Plot the Wavelet Variances of IMU Object in Combined Type
autoplot.lts

Plot the Latent Time Series Graph
ci_eta3

Generate eta3 confidence interval
batch_modwt_wvar_cpp

Computes the MO/DWT wavelet variance for multiple processes
WN

Create an White Noise (WN) Process
ar1_to_wv

AR1 process to WV
desc.to.ts.model

Create a ts.model from desc string
demo.lts

Generate a Demo about the Latent Time Series
autoplot.gmwmComp

Compare GMWM Model Fits with ggplot2 (Internal)
cust.model.score

Formats the model score matrix
RW

Create an Random Walk (RW) Process
avar

Calculate the Allan Variance
deriv_2nd_dr

Analytic second derivative matrix for drift process
cov_bootstrapper

Bootstrap for Matrix V
D_matrix

Analytic D matrix of Processes
print.modwt

Print Maximum Overlap Discrete Wavelet Transform
comb.mat

Create Combination Matrix
ci_eta3_robust

Generate eta3 robust confidence interval
auto_imu

Find the auto imu result
B_matrix

B Matrix
ARMA

Create an Autoregressive Moving Average (ARMA) Process
Mod_cpp

Absolute Value or Modulus of a Complex Number.
build_model_set

Build List of Unique Models
model_theta

Generate the ts model object's theta vector
getObjFun

Retrieve GMWM starting value from Yannick's objective function
autoplot.wvar.imu

Plot the Wavelet Variances of IMU Object
getModel.gmwm

Get the model in a gmwm object
format_ci

Format the Confidence Interval for Estimates
autoplot.gts

Plot Time Series Data
count_models

Count Models
auto.imu

Automatically select appropriate model for IMU
haar_filter

Haar filter construction
find_full_model

Find the Common Denominator of the Models
ar1_to_gm

Transform AR1 to GM
gmwm_sd_bootstrapper

Bootstrap for Standard Deviations of Theta Estimates
gen_dr

Generate a drift
boot_pval_gof

Generate the Confidence Interval for GOF Bootstrapped
gen_rw

Generate a random walk without drift
autoplot.gmwm1

Graph Solution of the Generalized Method of Wavelet Moments Non-individually
acf_sum

Helper Function for ARMA to WV Approximation
conv.ar1.to.gm

GM Conversion
compare.models

Graphically Compare GMWM Models Constructed by the Same Data
gmwm_engine

Engine for obtaining the GMWM Estimator
plot.auto.imu

Wrapper to Automatic Model Selection Results of IMU Object
autoplot.imu6

Plot the Wavelet Variances of IMU Object in Split Type
gts

Create a GMWM TS Object based on data
avar_mo_cpp

Compute Maximal-Overlap Allan Variance using Means
gen_lts

Generate Latent Time Series based on Model (Internal)
obj_extract

Extract Object
brick_wall

Removal of Boundary Wavelet Coefficients
print.gmwm

Print gmwm object
get_summary

Routing function for summary info
gen_wn

Generate a white noise process
seq_len_cpp

Generate a sequence of values based on supplied number
gmwm_update_cpp

Update Wrapper for the GMWM Estimator
paperSetting

Frequent Graph Setting for Paper
plot.gmwm

Wrapper to Graph Solution of the Generalized Method of Wavelet Moments
wvar_cpp

Computes the (MODWT) wavelet variance
print.wvar

Print Wavelet Variances
select.desc.check

TS Model Checks
autoplot.gmwm2

Graph Solution of the Generalized Method of Wavelet Moments for Each Process
compute_cov_cpp

Computes the (MODWT) wavelet covariance matrix
cfilter

Time Series Convolution Filters
AR1

Create an Autoregressive 1 [AR(1)] Process
autoplot.auto.imu

Automatic Model Selection Results of IMU Object
create_wvar

Create a Wvar object
fast_cov_cpp

Computes the (MODWT) wavelet covariance matrix using Chi-square confidence interval bounds
arma_draws

Randomly guess starting parameters for ARMA
invert_check

Check Invertibility Conditions
DR

Create an Drift (DR) Process
avar_to_cpp

Compute Tau-Overlap Allan Variance
diff_cpp

Lagged Differences in Armadillo
deriv_dr

Analytic D matrix for drift process
gen_ar1

Generate an AR(1) sequence
autoplot.gmwm

Graph Solution of the Generalized Method of Wavelet Moments
brickwall

Brickwall functionality for MO/DWT
ci_wave_variance

Generate a Confidence intervval for a Univariate Time Series
compare.wvar

Compare Wavelet Variances
gof_test

Compute the GOF Test
do_polyroot_arma

Root Finding C++
dft_acf

Discrete Fourier Transformation for Autocovariance Function
bootstrap_gof_test

Compute the Bootstrapped GoF Test
compare.gmwm

Graphically Compare GMWM Model Fit
has

Obtain the value of an object's properties
gmwm

GMWM for Sensors, ARMA, SSM, and Robust
dwt_cpp

Discrete Wavelet Transform
dwt

Discrete Wavelet Transform
packageVersionCRAN

Latest Version of Package on CRAN
gmwm_master_cpp

Master Wrapper for the GMWM Estimator
e_drift

Expected value DR
deriv_rw

Analytic D matrix random walk process
code_zero

Optim loses NaN
deriv_qn

Analytic D matrix quantisation noise process
gen.gts

Create a GMWM TS Object based on model
jacobian_arma

Calculates the Jacobian for the ARMA process
gmwm_param_bootstrapper

Bootstrap for Estimating Both Theta and Theta SD
order_AR1s

Order AR1s by size of phi.
value

Obtain the value of an object's properties
var_drift

Variance DR
ggColor

Emulate ggplot2 default color palette
lts

Generate Latent Time Series Object Based on Data
opt_n_gof_bootstrapper

Bootstrap for Optimism and GoF
mean_diff

Mean of the First Difference of the Data
read_imu

Read an IMU Binary File into R
derivative_first_matrix

Analytic D matrix of Processes
print.rank.models

Print function for rank.models object
dr_to_wv

Drift to WV
pseudo_logit

Pseudo Logit Function
getObjFunStarting

Retrieve GMWM starting value from Yannick's objective function
logit

Logit Function
model_process_desc

Generate the ts model object's process desc
quantile_cpp

Find Quantiles
decomp_to_theo_wv

Decomposed WV to Single WV
guess_initial_old

Randomly guess a starting parameter
plot.lts

Wrapper Function to Plot the Graph of Latent Time Series
print.auto.imu

Print function for auto.imu object
model_score

Model Score
qmf

Quadrature Mirror Filter
print.dwt

Print Discrete Wavelet Transform
reverse_vec

Reverse Armadillo Vector
gmwm.imu

GMWM for (Robust) Sensor
rank.models

Automatically select appropriate model for a set of models
minroot

Obtain the smallest polynomial root
wave_variance

Generate a Wave Variance for a Univariate Time Series
modwt_cpp

Maximum Overlap Discrete Wavelet Transform
rank_models

Find the Rank Models result
field_to_matrix

Transform an Armadillo field to a matrix
wvar

Wavelet Variance
summary.avar

Summary Allan Variance
print.ts.model

Multiple a ts.model by constant
decomp_theoretical_wv

Each Models Process Decomposed to WV
optimism_bootstrapper

Bootstrap for Optimism
predict.gmwm

Predict future points in the time series using the solution of the Generalized Method of Wavelet Moments
rev_row_subset

Reverse Subset Row
print.wvcov

Print Asymptotic Covariance Matrix
[.imu

Subset an IMU Object
m2_drift

Second moment DR
update.gmwm

Update GMWM object for sensor, ARMA, SSM, and Robust
untransform_values

Revert Transform Values for Display
autoplot.wvarComp

Detail Implementation to Compare Wavelet Variances
wvcov

Calculate the Asymptotic Covariance Matrix
install_imudata

Install IMU Data Package
logit_inv

Logit Inverse Function
orderModel

Order the Model
update_obj

Update the Attributes of Objects
model_objdesc

Generate the ts model object description
gen_arma

Generate ARMA
transform_values

Transform Values for Optimization
gen.lts

Generate Latent Time Series Object Based on Model
theta_ci

Generate the Confidence Interval for Theta Estimates
unitConversion

Convert Unit of Time Series Data
update.lts

Update Object Attribute
*.ts.model

Multiple a ts.model by constant
idf_arma_total

Indirect Inference for ARMA
print.summary.gmwm

Print summary.gmwm object
plot.wvar

Wrapper to ggplot Wavelet Variances Graph
seq_cpp

Generate a sequence of values
plot.wvar.imu

Wrapper Function to Plot the Wavelet Variances of IMU Object
modwt_wvar_cpp

Computes the (MODWT) wavelet variance
plot.avar

Plot Allan Variance
rfilter

Time Series Recursive Filters
output.format

Formats the rank.models (auto.imu) object
is.whole

Integer Check
ar1_draw

Randomly guess starting parameters for AR1
gen_model

Generate Time Series based on Model (Internal)
logit2_inv

Logit2 Inverse Function
gen_qn

Generate a Quantisation Noise (QN) sequence
plot.gts

Plot Time Series Data
qn_to_wv

Quantisation Noise to WV
scales_cpp

Computes the MODWT scales
is.gts

Is GMWM Object
deriv_wn

Analytic D matrix white noise process
guess_initial

Randomly guess a starting parameter
logit2

Logit Function
modwt

Maximum Overlap Discrete Wavelet Transform
placeLegend

Place Legend
print.imu

Print GMWM Data Object
rev_col_subset

Reverse Subset Column
+.ts.model

Add ts.model objects together
idf_arma

Indirect Inference for ARMA
read.imu

Read an IMU Binary File into R
sort_mat

Sort Matrix by Column
theoretical_wv

Model Process to WV
summary.wvar

Summary of Wavelet Variances
summary.modwt

Summary Maximum Overlap Discrete Wavelet Transform
wn_to_wv

White Noise to WV
rw_to_wv

Random Walk to WV
summary.dwt

Summary Discrete Wavelet Transform
select_filter

Select the Wavelet Filter
summary.gmwm

Summary of GMWM object
vector_to_set

Conversion function of Vector to Set
arma_adapter

ARMA Adapter to ARMA to WV Process function
summary.wvcov

Summary Wavelet Covariance Matrix
sum_field_vec

Accumulation of Armadillo field
print.avar

Prints Allan Variance
summary.rank.models

Summary function for rank.models object
Mod_squared_cpp

Absolute Value or Modulus of a Complex Number Squared.
QN

Create an Quantisation Noise (QN) Process
autoplot.wvar

Graph Wavelet Variances
calculate_psi_matrix

Calculate the Psi matrix
deriv_2nd_ar1

Analytic second derivative matrix for AR(1) process
deriv_ar1

Analytic D matrix for AR(1) process
do_polyroot_cpp

Root Finding C++
gm_to_ar1

Transform GM to AR1
create_imu

Internal IMU Object Construction
gmwm-package

Generalized Method of Wavelet Moments (GMWM) Package
imu

Create an IMU Object
pseudo_logit_inv

Pseudo Logit Inverse Function
summary.auto.imu

Summary function for auto.imu object