Perform clustering by Hard Competitive Learning using flexclust::cclust
u.HARDCL(x, x.test = NULL, k = 2, dist = "euclidean",
verbose = TRUE, ...)
Input matrix / data.frame
Testing set matrix / data.frame
Integer: Number of clusters to get
String: Distance measure to use: 'euclidean' or 'manhattan'
Logical: If TRUE, print messages to screen
Additional parameters to be passed to flexclust::cclust
Other Clustering: u.CMEANS
,
u.EMC
, u.H2OKMEANS
,
u.HOPACH
, u.KMEANS
,
u.NGAS
, u.PAMK
,
u.PAM
, u.SPEC