Learn R Programming

rtemis (version 0.79)

s.C50: C5.0 Decision Trees and Rule-Based Models [C]

Description

Train a C5.0 decision tree using `C50::C5.0`

Usage

s.C50(x, y = NULL, x.test = NULL, y.test = NULL, trials = 10,
  rules = FALSE, weights = NULL, ipw = TRUE, ipw.type = 2,
  control = C50::C5.0Control(), costs = NULL, x.name = NULL,
  y.name = NULL, print.plot = TRUE, plot.fitted = NULL,
  plot.predicted = NULL, plot.theme = getOption("rt.fit.theme",
  "lightgrid"), question = NULL, rtclass = NULL, verbose = TRUE,
  trace = 0, outdir = NULL, save.mod = ifelse(!is.null(outdir), TRUE,
  FALSE), ...)

Arguments

x

Numeric vector or matrix / data frame of features i.e. independent variables

y

Numeric vector of outcome, i.e. dependent variable

x.test

Numeric vector or matrix / data frame of testing set features Columns must correspond to columns in x

y.test

Numeric vector of testing set outcome

trials

Integer [1, 100]: Number of boosting iterations

rules

Logical: If TRUE, decompose the tree to a rule-based model

weights

Numeric vector: Weights for cases. For classification, weights takes precedence over ipw, therefore set weights = NULL if using ipw. Note: If weight are provided, ipw is not used. Leave NULL if setting ipw = TRUE. Default = NULL

ipw

Logical: If TRUE, apply inverse probability weighting (for Classification only). Note: If weights are provided, ipw is not used. Default = TRUE

ipw.type

Integer 0, 1, 2 1: class.weights as in 0, divided by max(class.weights) 2: class.weights as in 0, divided by min(class.weights) Default = 2

x.name

Character: Name for feature set

y.name

Character: Name for outcome

print.plot

Logical: if TRUE, produce plot using mplot3 Takes precedence over plot.fitted and plot.predicted

plot.fitted

Logical: if TRUE, plot True (y) vs Fitted

plot.predicted

Logical: if TRUE, plot True (y.test) vs Predicted. Requires x.test and y.test

plot.theme

String: "zero", "dark", "box", "darkbox"

question

String: the question you are attempting to answer with this model, in plain language.

rtclass

String: Class type to use. "S3", "S4", "RC", "R6"

verbose

Logical: If TRUE, print summary to screen.

trace

Integer: If higher than 0, will print more information to the console. Default = 0

outdir

Path to output directory. If defined, will save Predicted vs. True plot, if available, as well as full model output, if save.mod is TRUE

save.mod

Logical. If TRUE, save all output as RDS file in outdir save.mod is TRUE by default if an outdir is defined. If set to TRUE, and no outdir is defined, outdir defaults to paste0("./s.", mod.name)

...

Additional arguments

Value

rtMod object

See Also

elevate for external cross-validation

Other Supervised Learning: s.ADABOOST, s.ADDTREE, s.BART, s.BAYESGLM, s.BRUTO, s.CART, s.CTREE, s.DA, s.ET, s.EVTREE, s.GAM.default, s.GAM.formula, s.GAMSEL, s.GAM, s.GBM3, s.GBM, s.GLMNET, s.GLM, s.GLS, s.H2ODL, s.H2OGBM, s.H2ORF, s.IRF, s.KNN, s.LDA, s.LM, s.MARS, s.MLRF, s.MXN, s.NBAYES, s.NLA, s.NLS, s.NW, s.POLYMARS, s.PPR, s.PPTREE, s.QDA, s.QRNN, s.RANGER, s.RFSRC, s.RF, s.SGD, s.SPLS, s.SVM, s.TFN, s.XGBLIN, s.XGB

Other Tree-based methods: s.ADABOOST, s.ADDTREE, s.BART, s.CART, s.CTREE, s.ET, s.EVTREE, s.GBM3, s.GBM, s.H2OGBM, s.H2ORF, s.IRF, s.MLRF, s.PPTREE, s.RANGER, s.RFSRC, s.RF, s.XGB

Other Interpretable models: s.ADDTREE, s.CART, s.GLMNET, s.GLM