Trains a POLYMARS model using polspline::polymars
and validates it
s.POLYMARS(x, y = NULL, x.test = NULL, y.test = NULL,
x.name = NULL, y.name = NULL,
grid.resample.rtset = rtset.grid.resample(),
bag.resample.rtset = NULL, weights = NULL, ipw = TRUE,
ipw.type = 2, upsample = FALSE, upsample.seed = NULL,
maxsize = ceiling(min(6 * (nrow(x)^{ 1/3 }), nrow(x)/4, 100)),
classify = NULL, n.cores = rtCores, print.plot = TRUE,
plot.fitted = NULL, plot.predicted = NULL,
plot.theme = getOption("rt.fit.theme", "lightgrid"), question = NULL,
verbose = TRUE, trace = 0, save.mod = FALSE, outdir = NULL, ...)
Numeric vector or matrix of features, i.e. independent variables
Numeric vector of outcome, i.e. dependent variable
(Optional) Numeric vector or matrix of validation set features
must have set of columns as x
(Optional) Numeric vector of validation set outcomes
Additional parameters to pass to polspline::polymars
Object of class rtMod
elevate for external cross-validation
Other Supervised Learning: s.ADABOOST
,
s.ADDTREE
, s.BART
,
s.BAYESGLM
, s.BRUTO
,
s.C50
, s.CART
,
s.CTREE
, s.DA
,
s.ET
, s.EVTREE
,
s.GAM.default
, s.GAM.formula
,
s.GAMSEL
, s.GAM
,
s.GBM3
, s.GBM
,
s.GLMNET
, s.GLM
,
s.GLS
, s.H2ODL
,
s.H2OGBM
, s.H2ORF
,
s.IRF
, s.KNN
,
s.LDA
, s.LM
,
s.MARS
, s.MLRF
,
s.MXN
, s.NBAYES
,
s.NLA
, s.NLS
,
s.NW
, s.PPR
,
s.PPTREE
, s.QDA
,
s.QRNN
, s.RANGER
,
s.RFSRC
, s.RF
,
s.SGD
, s.SPLS
,
s.SVM
, s.TFN
,
s.XGBLIN
, s.XGB