Train an XGBoost learner with linear boosters
s.XGBLIN(x, y = NULL, x.test = NULL, y.test = NULL, weights = NULL,
lambda = NULL, lambda.bias = 0, alpha = 0,
early_stopping_rounds = 50, force.nrounds = NULL,
resampler = "strat.sub", n.resamples = 10, train.p = 0.75,
strat.n.bins = 4, stratify.var = NULL, target.length = NULL,
seed = NULL, importance = TRUE, n.cores = 1,
nthread = detectCores(), parallel.type = c("psock", "fork"),
print.plot = TRUE, outdir = NULL, verbose = TRUE,
xgb.verbose = FALSE, ...)Numeric vector or matrix / data frame of features i.e. independent variables
Numeric vector of outcome, i.e. dependent variable
Numeric vector or matrix / data frame of testing set features
Columns must correspond to columns in x
Numeric vector of testing set outcome
Numeric vector: Weights for cases. For classification, weights takes precedence
over ipw, therefore set weights = NULL if using ipw.
Note: If weight are provided, ipw is not used. Leave NULL if setting ipw = TRUE. Default = NULL
[gS] L2 regularization on weights
[gS] L1 regularization on weights
Integer: Number of rounds to run if not estimating optimal number by CV
Integer: Number of threads for xgboost using OpenMP. Only parallelize resamples
using n.cores or the xgboost execution using this setting. At the moment of writing, parallelization via this
parameter causes a linear booster to fail most of the times. Therefore, default is rtCores
for 'gbtree', 1 for 'gblinear'
Logical: if TRUE, produce plot using mplot3
Takes precedence over plot.fitted and plot.predicted
Path to output directory.
If defined, will save Predicted vs. True plot, if available,
as well as full model output, if save.mod is TRUE
Logical: If TRUE, print summary to screen.
Integer: Verbose level for XGB learners used for tuning.
Additional arguments to be passed to s.XGB
[gS] denotes vector will trigger grid search
Warning: Using nthread > 1 may lower accuracy - test on your data
elevate for external cross-validation
Other Supervised Learning: s.ADABOOST,
s.ADDTREE, s.BART,
s.BAYESGLM, s.BRUTO,
s.C50, s.CART,
s.CTREE, s.DA,
s.ET, s.EVTREE,
s.GAM.default, s.GAM.formula,
s.GAMSEL, s.GAM,
s.GBM3, s.GBM,
s.GLMNET, s.GLM,
s.GLS, s.H2ODL,
s.H2OGBM, s.H2ORF,
s.IRF, s.KNN,
s.LDA, s.LM,
s.MARS, s.MLRF,
s.MXN, s.NBAYES,
s.NLA, s.NLS,
s.NW, s.POLYMARS,
s.PPR, s.PPTREE,
s.QDA, s.QRNN,
s.RANGER, s.RFSRC,
s.RF, s.SGD,
s.SPLS, s.SVM,
s.TFN, s.XGB