Train a Projection Pursuirt Regression model
s.PPR(x, y = NULL, x.test = NULL, y.test = NULL, x.name = NULL,
y.name = NULL, grid.resample.rtset = rtset.grid.resample(),
grid.search.type = c("exhaustive", "randomized"),
grid.search.randomized.p = 0.1, weights = NULL, nterms = NULL,
max.terms = nterms, optlevel = 3, sm.method = c("supsmu", "spline",
"gcvspline"), bass = 0, span = 0, df = 5, gcvpen = 1,
metric = "MSE", maximize = FALSE, n.cores = rtCores,
print.plot = TRUE, plot.fitted = NULL, plot.predicted = NULL,
plot.theme = getOption("rt.fit.theme", "lightgrid"), question = NULL,
rtclass = NULL, verbose = TRUE, trace = 0, outdir = NULL,
save.mod = ifelse(!is.null(outdir), TRUE, FALSE), ...)
Numeric vector or matrix / data frame of features i.e. independent variables
Numeric vector of outcome, i.e. dependent variable
Numeric vector or matrix / data frame of testing set features
Columns must correspond to columns in x
Numeric vector of testing set outcome
Character: Name for feature set
Character: Name for outcome
Numeric vector: Weights for cases. For classification, weights
takes precedence
over ipw
, therefore set weights = NULL
if using ipw
.
Note: If weight
are provided, ipw
is not used. Leave NULL if setting ipw = TRUE
. Default = NULL
[gS] Integer: number of terms to include in the final model
[gS] Integer [0, 3]: optimization level (Default = 3). See Details in stats::ppr
[gS] String: "supsmu", "spline", "gcvspline". Smoothing method. Default = "gcvspline"
[gS] Numeric [0, 10]: for sm.method
"supsmu": larger values result in greater smoother
(Default = 5). See stats::ppr
[gS] Numeric [0, 1]: for sm.method
"supsmu": 0 (Default) results in automatic span selection by
local crossvalidation. See stats::ppr
[gS] Numeric: for sm.method
"spline": Specify smoothness of each ridge term. See stats::ppr
[gs] Numeric: for sm.method
"gcvspline": Penalty used in the GCV selection for each
degree of freedom used. Higher values -> greater smoothing. See stats::ppr
Default = 5
Logical: if TRUE, produce plot using mplot3
Takes precedence over plot.fitted
and plot.predicted
Logical: if TRUE, plot True (y) vs Fitted
Logical: if TRUE, plot True (y.test) vs Predicted.
Requires x.test
and y.test
String: "zero", "dark", "box", "darkbox"
String: the question you are attempting to answer with this model, in plain language.
String: Class type to use. "S3", "S4", "RC", "R6"
Logical: If TRUE, print summary to screen.
Integer: If higher than 0, will print more information to the console. Default = 0
Path to output directory.
If defined, will save Predicted vs. True plot, if available,
as well as full model output, if save.mod
is TRUE
Logical. If TRUE, save all output as RDS file in outdir
save.mod
is TRUE by default if an outdir
is defined. If set to TRUE, and no outdir
is defined, outdir defaults to paste0("./s.", mod.name)
Additional arguments to be passed to ppr
Object of class rtemis
[gS]: If more than one value is passed, parameter tuning via grid search will be performed on resamples of the training set prior to training model on full training set Interactions: PPR automatically models interactions, no need to specify them
elevate for external cross-validation
Other Supervised Learning: s.ADABOOST
,
s.ADDTREE
, s.BART
,
s.BAYESGLM
, s.BRUTO
,
s.C50
, s.CART
,
s.CTREE
, s.DA
,
s.ET
, s.EVTREE
,
s.GAM.default
, s.GAM.formula
,
s.GAMSEL
, s.GAM
,
s.GBM3
, s.GBM
,
s.GLMNET
, s.GLM
,
s.GLS
, s.H2ODL
,
s.H2OGBM
, s.H2ORF
,
s.IRF
, s.KNN
,
s.LDA
, s.LM
,
s.MARS
, s.MLRF
,
s.MXN
, s.NBAYES
,
s.NLA
, s.NLS
,
s.NW
, s.POLYMARS
,
s.PPTREE
, s.QDA
,
s.QRNN
, s.RANGER
,
s.RFSRC
, s.RF
,
s.SGD
, s.SPLS
,
s.SVM
, s.TFN
,
s.XGBLIN
, s.XGB