Train iterative Random Forests for regression or classification using iRF
s.IRF(x, y = NULL, x.test = NULL, y.test = NULL, x.name = NULL,
y.name = NULL, n.trees = 1000, n.iter = 5, n.bootstrap = 30,
interactions.return = NULL, classwt = NULL, ipw = TRUE,
upsample = FALSE, upsample.seed = NULL, autotune = FALSE,
n.trees.try = 500, stepFactor = 2, mtry = NULL, mtryStart = NULL,
mtry.select.prob = NULL, proximity = FALSE, importance = TRUE,
replace = TRUE, min.node.size = 1, strata = NULL,
sampsize = NULL, tune.do.trace = FALSE, print.tune.plot = FALSE,
print.plot = TRUE, plot.fitted = NULL, plot.predicted = NULL,
plot.theme = getOption("rt.fit.theme", "lightgrid"),
n.cores = rtCores, question = NULL, verbose = TRUE, trace = 0,
outdir = NULL, save.mod = ifelse(!is.null(outdir), TRUE, FALSE), ...)
Numeric vector or matrix / data frame of features i.e. independent variables
Numeric vector of outcome, i.e. dependent variable
Numeric vector or matrix / data frame of testing set features
Columns must correspond to columns in x
Numeric vector of testing set outcome
Character: Name for feature set
Character: Name for outcome
Integer: Number of trees to grow. Default = 1000
Vector, Float: Priors of the classes for classification only. Need not add up to 1
Logical: If TRUE, apply inverse probability weighting (for Classification only).
Note: If weights
are provided, ipw
is not used. Default = TRUE
Logical: If TRUE, upsample training set cases not belonging in majority outcome group
Integer: If provided, will be used to set the seed during upsampling. Default = NULL (random seed)
Logical: If TRUE, use ]coderandomForest::tuneRF to determine mtry
Integer: Number of trees to train for tuning, if autotune = TRUE
Float: If autotune = TRUE
, at each tuning iteration, mtry
is multiplied or
divided by this value. Default = 1.5
[gS] Integer: Number of features sampled randomly at each split
Integer: If autotune = TRUE
, start at this value for mtry
Logical: If TRUE, calculate proximity measure among cases. Default = FALSE
Logical: If TRUE, estimate variable relative importance. Default = TRUE
Logical: If TRUE, sample cases with replacement during training. Default = TRUE
Vector, Factor: Will be used for stratified sampling
Integer: Size of sample to draw. In Classification, if strata
is defined, this
can be a vector of the same length, in which case, corresponding values determine how many cases are drawn from
the strata.
Same as do.trace
but for tuning, if autotune = TRUE
Logical: passed to randomForest::tuneRF
. Default = FALSE
Logical: if TRUE, produce plot using mplot3
Takes precedence over plot.fitted
and plot.predicted
Logical: if TRUE, plot True (y) vs Fitted
Logical: if TRUE, plot True (y.test) vs Predicted.
Requires x.test
and y.test
String: "zero", "dark", "box", "darkbox"
Integer: Number of cores to use. Defaults to available cores reported by
future::availableCores()
, unles option rt.cores
is set at the time the library is loaded
String: the question you are attempting to answer with this model, in plain language.
Logical: If TRUE, print summary to screen.
String, Optional: Path to directory to save output
Logical. If TRUE, save all output as RDS file in outdir
save.mod
is TRUE by default if an outdir
is defined. If set to TRUE, and no outdir
is defined, outdir defaults to paste0("./s.", mod.name)
Additional arguments to be passed to iRF::iRF
rtMod object
If autotue = TRUE
, iRF::tuneRF
will be run to determine best mtry
value.
elevate for external cross-validation
Other Supervised Learning: s.ADABOOST
,
s.ADDTREE
, s.BART
,
s.BAYESGLM
, s.BRUTO
,
s.C50
, s.CART
,
s.CTREE
, s.DA
,
s.ET
, s.EVTREE
,
s.GAM.default
, s.GAM.formula
,
s.GAMSEL
, s.GAM
,
s.GBM3
, s.GBM
,
s.GLMNET
, s.GLM
,
s.GLS
, s.H2ODL
,
s.H2OGBM
, s.H2ORF
,
s.KNN
, s.LDA
,
s.LM
, s.MARS
,
s.MLRF
, s.MXN
,
s.NBAYES
, s.NLA
,
s.NLS
, s.NW
,
s.POLYMARS
, s.PPR
,
s.PPTREE
, s.QDA
,
s.QRNN
, s.RANGER
,
s.RFSRC
, s.RF
,
s.SGD
, s.SPLS
,
s.SVM
, s.TFN
,
s.XGBLIN
, s.XGB
Other Tree-based methods: s.ADABOOST
,
s.ADDTREE
, s.BART
,
s.C50
, s.CART
,
s.CTREE
, s.ET
,
s.EVTREE
, s.GBM3
,
s.GBM
, s.H2OGBM
,
s.H2ORF
, s.MLRF
,
s.PPTREE
, s.RANGER
,
s.RFSRC
, s.RF
,
s.XGB