Perform HOPACH clustering using hopach::hopach
u.HOPACH(x, dmat = NULL, metric = c("cosangle", "abscosangle",
"euclid", "abseuclid", "cor", "abscor"), K = 15, kmax = 9,
khigh = 9, verbose = TRUE, ...)
Input matrix / data.frame
Matrix (numeric, no missing values) or hdist
object of pairwise distances.
If NULL
String: Dissimilarity metric to be used. Options: 'euclidean', 'manhattan'
Integer, (0:15]: Maximum number of levels
Integer, [1:9]: Maximum number of children at each node in the tree
Integer, [1:9]: Maximum number of children at each nod ein the tree when computing the
the Mean/Median Split Silhouette. Usually same as kmax
Logical: If TRUE, print messages to screen
Additional parameters to be passed to cluster::hopach
Other Clustering: u.CMEANS
,
u.EMC
, u.H2OKMEANS
,
u.HARDCL
, u.KMEANS
,
u.NGAS
, u.PAMK
,
u.PAM
, u.SPEC