Perform Spectral Clustering using kernlab::specc
u.SPEC(x, k = 2, kernel = "rbfdot", kpar = "automatic",
nystrom.red = FALSE, nystrom.sample = dim(x)[1]/6,
iterations = 200, mod.sample = 0.75, na.action = na.omit,
verbose = TRUE, ...)
Input matrix / data.frame
Integer: Number of clusters to get
String: Kernel to use: "rbfdot", "polydot", "vanilladot", tanhdot", "laplacedot", "besseldot", "anovadot", "splinedot", "stringdot"
String OR List: "automatic", "local" OR list with: sigma (for "rbfdor", "laplacedot"); degree, scale, offset (for "polydot"); scale, offset (for "tanhdot"); sigma, order, degree (for "besseldot"); sigma, degree (for "anovadot"); length, lambda, normalized (for "stringdot")
Logical: if TRUE, use nystrom method to calculate eigenvectors (Default = FALSE)
Integer: Number of points to use for estimating the eigenvalues when nystrom.red = TRUE
Default = dim(x)[1]/6
Integer: Number of iterations allowed
Float (0, 1): Proportion of data to use when estimating sigma. Default = .75
Function: Action to perform on NA (Default = na.omit
)
Logical: If TRUE, print messages to screen
Additional parameters to be passed to flexclust::cclust
Other Clustering: u.CMEANS
,
u.EMC
, u.H2OKMEANS
,
u.HARDCL
, u.HOPACH
,
u.KMEANS
, u.NGAS
,
u.PAMK
, u.PAM